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Motivation
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Warm up Problem

Theorem

a > 0 =⇒ (x∗, y∗) =

(
−

b

2a
,
4ac − b2

4a

)

a < 0 =⇒ (x∗, y∗) =

(
−

b

2a
,
4ac − b2

4a

)
a = 0 =⇒ uh oh!

Figure: Happy optimization image
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What is Optimization?

Figure: Optimization Wizard
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Different Flavors!
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Constrained Optimization [12](motivated this entire project)

Definition

Constrained optimization solves{
minx∈X f (x)

s.t. gi (x) ≤ 0

We can rewrite this as

min
x∈X

f (x) + ιy≤0(g1(x), . . . , gm(x))

where indicator function ιy≤0(y) =

{
0 yi ≤ 0 ∀i = 1, . . . ,m

+∞ o.w .
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Robustness of Composite Optimization

Definition

Composite optimization aims to solve

min
x∈X

f (x) + h(g1(x), . . . , gm(x))

Remark

Note this looks very similar to Constrained optimization because
the latter is a specific case of the former!
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Robustness of Composite Optimization

Remark (The Narrative)

We will solve the general composite problem with the following

composition of functions → sum of functions

sum of functions → sum of rates

sum of rates → allows for heterogeneity

Composite Functions Flavor

h(z) = ιy≤0(z1, . . . , zm) Constrained optimization

h(z) = a1z1 + · · ·+ amzm Minimizing sums

h(z) = maxi{z1, . . . , zm} Minimax optimization

hη(z) =
1
η
log
(∑m

i=1 exp(ηzi )
)

“Soft-max”

hη(z) =
1
η

∑m
i=1 zi log(zi ) Negative Entropy



Motivation Tools “JG” Method Generalized curvature “Parameter-free” Conclusion

Heterogeneity

Consider the following problem from statistics:

min
β∈Rp

1

N
∥y − Xβ∥22 s.t. ∥β∥1 ≤ t

Equivalently, we sometimes see this as

min
β∈Rp

∥y − Xβ∥22︸ ︷︷ ︸
Smooth component

+ λ∥β∥1︸ ︷︷ ︸
Lipschitz component

Remark

While each component possess some individual structure, the
objective function possess none whatsoever!
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Heterogeneity

Consider the following ML problem of support vector machines:
minw ,b,ξ ∥w∥22 + C

∑n
i=1 ξi

s.t. yi (w
T xi − b) ≥ 1− ξi

ξi ≥ 0

Again, we can reframe this as:

min
w ,b

F (w , b) := ∥w∥22︸ ︷︷ ︸
Smooth component

+C
n∑

i=1

max{0, 1− yi (w
T xi − b)}︸ ︷︷ ︸

Lipschitz component

Remark

Many nonsmooth functions can be decomposed this way!
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Let’s talk about parameters

Remark

Heterogeneity → good for expanding function class

“ugly.” (in quotes because no rates are ugly!) for the rates

m∑
j=1

c′′j min


2

2(qj−pj )

(1+3pj )(1+qj )

2

2(qj−pj )

(1+3pj )(1+qj ) − 1

,
log2(R/ϵ̃)

2

2(qj−pj )

(1+3pj )(1+qj )


 L

1+qj
j

µ
1+pj
j [ϵ̃]

qj−pj


2

(1+3pj )(1+qj )

Upshot: we can collapsed all these parameters into two values:

LADAϵ︸ ︷︷ ︸
handles all the upper curvature

µADA
ϵ︸ ︷︷ ︸

handles all the lower curvature
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Tools
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Warm up

• Let’s start off with an easy question:

• What is
1,853,020,188,851,841×328,256,967,394,537,077,627?

• Answer: 608,266,787,713,357,709,119,683,992,618,861,307

• Okay let’s try another

• What is 32+43?

• Answer: 75

• I claim these are both equally easy with the right tools!
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What makes a function nice

Remark

”Optimization is hard” - James Schmidt

We need to restrict ourselves to nicer classes of functions.

Convexity (recall the quadratic) seems to be a great start as minimizers often

• exist

• correspond to (sub)gradients being zero

• are global [1]

There are many definitions of convexity.

In short, convexity means “curves upwards”
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Smooth and Strongly Convex

upper curvature → trust gradients as we move away

lower curvature → each step forces us much closer

Figure: Zhanyu Wang
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Gradient Descent (as discretizied gradient flow)

Figure: https://francisbach.com/gradient-flows/
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Gradient Descent (as minimizing a majorant)

As α → 0, the quadratic gets real skinny around xk , and the minimum is at xk .
As α → 2, we lose the majorant property, but still get descent!

Figure: https://www.desmos.com/calculator/xlyakh5mdj

https://www.desmos.com/calculator/xlyakh5mdj
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Gradient Descent (as minimizing a majorant)

Definition

Given stepsize α and “smoothness constant” L. We define the quadratic approximation as

Qf ,xk
(x) := f (xk ) + ⟨∇f (xk ), x − xk⟩ +

L

2α
∥x − xk∥

2

We can then explicitly solve for

xk+1 = argmin
x

Qf ,xk (x)

Since ∇Qf ,xk (x) = ∇f (xk ) +
L
α
(x − xk ) = 0 yields

xk+1 = xk −
α

L
∇f (xk )

with guaranteed descent for α ∈ (0, 2). And we get a rate that look like

f (xN)− f ∗ ≤
LD2

N + 4
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Momentum (magic) [9]

Remark

Momentum is this magical tool that in practice, isn’t much harder to run, but in
theory is notoriously complicated.

Figure: Momentum Math
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Momentum (magic) [9]

Remark

Key takeaway! Momentum leads to faster convergence. Polyak’s fails in some cases.
Nesterov’s is provably faster! (remember this value below)

f (xN)− f ∗ ≤
LD2

N2
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Conjugate Functions [2]

“Duality in mathematics is not a theorem but a principle”-Michael Atiyah

Definition
Given convex function f : X → R, we define the convex conjugate as

f ∗(y) := sup
x∈X
{⟨x , y⟩ − f (x)}

convex f (x)→ encodes “primal” objects: points, vectors, resources, cost

conjugate f ∗(y)→ encodes “dual” objects: gradients, hyperplanes, prices, profit
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Proximal Operators (not as scary as they sound)

Recall back to minimizing that quadratic upper bound. We aimed to solve

Formula

xk+1 = argmin
x

f (xk ) + ⟨∇f (xk ), x − xk ⟩︸ ︷︷ ︸
call this linearization: ℓf ,xk

+
L

2α
∥x − xk∥2

This motivates

Formula (proximal operator)

proxg,τ (x) := argmin
y

g(y) +
τ

2
∥y − x∥2

a gradient step is simply xk+1 = proxℓf ,xk ,τ
(xk )

Remark

In general, We can replace ℓf ,xk to any function (some are more computable), to
“minimize with a penalty from moving away from x”
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Lagrangian

Often to solve constrained optimization , we utilize a Lagrangian, which
incorporates “Lagrangian-Dual” variables, and instead solve1

inf
x∈X

sup
λ∈Rm

+

L(x ;λ) := f (x)︸︷︷︸
(primal) cost function

+ ⟨λ, g(x)⟩︸ ︷︷ ︸
(dual) penalty for infeasibility

any gi (x) infeasible =⇒ inner sup goes to infinity

If all gi (x) ≤ 0 =⇒ supremum attained at λ = 0

We only look at feasible regions, but in an “unconstrained” way!

Question

How can we utilize this in the composite setting?

1
g(x) = (g1(x), . . . , gm(x))
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Lagrangian

Fact

• (ιy≤0)
∗(s1, ..., sm) = ιy≥0(s1, ..., sm). [“conjugate the nonpositive indicator, get the nonnegative

indicator”]

• If f : X → R is convex, closed, and propera, then (f ∗)∗ = f

a
not too funky

Motivation for composite Lagrangian

inf
x∈X

sup
λ∈Rm

+

L(x ;λ) = inf
x∈X

sup
λ∈Rm

+

f (x) + ⟨λ, g(x)⟩

= inf
x∈X

sup
λ∈Rm

f (x) + ⟨λ, g(x)⟩ − ιy≥0(λ)

= inf
x∈X

sup
λ∈Rm

f (x) + ⟨λ, g(x)⟩ − ι∗y≤0(λ)

= inf
x∈X

f (x) + sup
λ∈Rm

⟨λ, g(x)⟩ − ι∗y≤0(λ)︸ ︷︷ ︸
((ιy≤0)

∗)∗=ιy≤0

= inf
x∈X

f (x) + ιy≤0(g(x))
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Composite Lagrangian and Main Story

Therefore, we can turn our primal problem into a primal-dual problem

Formula (simple Lagrangian)

min
x∈X

f (x) + h(g(x))︸ ︷︷ ︸
F (x)

= min
x∈X

sup
λ∈Rm

f (x) + ⟨λ, g(x)⟩ − h∗(λ)︸ ︷︷ ︸
L(x ;λ)

We now turned a composite problem into an functional sum problem. Our main story
will be this:

Composition of function︸ ︷︷ ︸
hard

→ Sum of functions︸ ︷︷ ︸
less hard

Composite Function Flavor Conjugate Function

h(z) = ιy≤0(z1, . . . , zm) Constrained optimization h∗(λ) = ι{y≥0}(λ1, . . . , λm)

h(z) = a1z1 + · · · + amzm Minimizing sums h∗(λ) = ι{λ=(a1,...,am)}(λ)

h(z) = maxi{z1, . . . , zm} Minimax optimization h∗(λ) = ι{y∈∆}(λ)

hη(z) = 1
η

log
(∑m

i=1 exp(ηzi )
)

“Soft-max” h∗(λ) = 1
η

∑m
i=1 λi log (λi )
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The “Jimmy and George” Method [12]
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Outline

Three main tools:

1 Modified Lagrangian
2 “Q-Analysis”
3 Sliding Technique

Figure: (bear with me through this)
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Modified Lagrangian

The standard Lagrangian isn’t enough. We want to further “dualize” and
unpack the complicated functions.

Formula (modified Lagrangian)

L(x ;λ, ν) := f (x) + ⟨λ, νx − g∗(ν)︸ ︷︷ ︸
conjugate of g

⟩ − h∗(λ)

We then aim to solve a similar min-max problem

min
x∈X

f (x) + h(g(x)) = min
x∈X

max
λ∈Λ,ν∈V

L(x ;λ, ν)

Remark

Now we have access to a single function encoding information for points,
dual variables, and gradients of our components!
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Q-Analysis

We need one more tool...

Definition

If (x∗;λ∗, ν∗) solves above problem, then it is a saddle point if for all other x ∈ X
and (λ, ν) ∈ Λ× V :

L(x∗;λ, ν) ≤ L(x∗;λ∗, ν∗) ≤ L(x ;λ∗, ν∗)

In particular, for any pair of optimal, sub-optimal points, we have
L(x ;λ∗, ν∗)− L(x∗;λ, ν) ≥ 0

This inspires the definition of a gap function.

Formula (Gap Function)

Q(ẑ ; z) := L(x̂ ;λ, ν)− L(x ; λ̂, ν̂)

for which the saddle point condition gives

Q(ẑ , z∗) ≥ 0
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Splitting up Q

Remark

Well unfortunately, we still do not know what to do with this mysterious gap function

Q(z t ; z) = Qν(z
t ; z) + Qλ(z

t ; z) + Qx (z
t ; z)

Simply minimize the boxed components (the ones with iterate values νt , λt , and x t

respectively)

• Qν (zt ; z) := L(xt ;λ, ν) − L(xt ;λ, νt ) = ⟨λ, νxt − g∗(ν)⟩ −⟨λ, νtxt − g∗(νt )⟩

• Qλ(zt ; z) := L(xt ;λ, νt ) − L(xt ;λt , νt ) =

⟨λ, νtxt − g∗(νt )⟩ − h∗(λ) −
[
⟨λt

, ν
txt − g∗(νt )⟩ − h∗(λt )

]

• Qx (z
t ; z) := L(xt ;λt , νt ) − L(x ;λt , νt ) = ⟨

m∑
i=1

λ
t
i ν

t
i , x

t⟩ + f (xt ) − ⟨
∑m

i=1 λt
i ν

t
i , x⟩ − f (x)
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Splitting up Q

Remark

We conclude with the following scheme:

minimize Composite→ minimax Sum→ minimize Gap→ minimize Linear Functionsa

a
plus perhaps a prox friendly term

We just apply our previous tools (momentum to speed up convergence (step 1),
proximal operators so we don’t move too far from our previous iterates, etc.).
Step two is just a gradient [11, Lemma 2]

1 x̃ t ← x t−1 + θt(x t−1 − x t−2)

2 νti ← argmaxνi∈Vi
⟨νi , x̃ t⟩ − g∗

i (νi )− τtUg∗i
(ν; νt−1) ∀i ∈ [m]

3 λt ← argmaxλ∈Λ⟨λ, νt x̃ t − g∗(νt)⟩ − h∗(λ)− γt
2
∥λ− λt−1∥2

4 x t ← argminx∈X ⟨
∑m

i=1 λ
t
i ν

t
i , x⟩+ f (x) + ηt

2
∥x − x t−1∥2
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Sliding Technique (jump scare part 1)

We have now greatly reduced the problem to a nearly algorithmic method of
computing a momentum term, calling a gradient, and performing two prox steps. We
utilize the sliding method [7] to greatly reduce the number of oracle evaluations in
return for an inexact solve of some subproblem.
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Smooth Composite Results

Theorem (jump scare part 2)

Consider the composite setting, and let L(Λr ) be defined above for the Lagrangian and reference set Λr . Suppose
Algorithm 1 is run with the following stepsizes.

τt =
t − 1

2
, ηt =

L(Λr )

τt+1

, θt =
τt

τt−1 + 1
, ωt =

{
ωt−1/θt if t ≥ 2

1 if t = 1
(1)

Let Mt = ∥νt∥, d(Λr ) = ∥λ∗∥ + r , and some balancing term ∆ > 0, the inner loop stepsizes are calculated as:

St = ⌈Mt∆t⌉, M̃t =
St

∆t
, ρt =

{
M̃t/M̃t−1 if s = 1

1 if s ≥ 2
, βt =

M̃td(Λr )

∥x0 − x∗∥
, γt =

M̃2
t

βt
, δt = 1 ∀s ≥ 1

(2)
Then we have an ϵ-optimal solution whenever we use at least

N ≥

√√√√ 1

ϵ

(
2d(Λr )∥x0 − x∗∥

∆
+ L(Λr )∥x0 − x∗∥2

)

Choosing ∆ =
d(Λr )

∥x0−x∗∥L(Λr )
we get that after N steps,

Q(z̄N ; z) ≤
3L(Λr )∥x0 − x∗∥2

N2
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Let’s recap (still just in the smooth setting):

• We used conjugate functions to remove the composition and encode
dual variables and function gradients into a single object to optimize

• We introduced a gap function, one we can split up and minimize
sequentially, as a reference for optimality

• Utilizing a sliding technique with cleverly chosen parameters and
momentum, we achieve an optimal rate.

• That is all to say, that for a given ϵ > 0, we need

Nϵ =

√
3L(Λr )∥x0 − x∗∥2

ϵ

steps (expensive gradient calls) to have an ϵ-accurate solution!

• If we want to count total matrix vector multiplications or the
prox-steps,

Cϵ = O
(
L(Λr )∥x0 − x∗∥2

ϵ

)
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Generalization to Hölder Smoothness and
Uniform Convexity
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Generalized Curvature

Relaxing our upper and lower curvature conditions

Definition

We say that f : Rn → R is (L, p)-Hölder smootha if ∥∇f (y)−∇f (x)∥ ≤ L∥y − x∥p or
equivalently:

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+
L

p + 1
∥y − x∥p+1

Conversely, we say f is (µ, q)-Uniformly convexb if:

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+
µ

q + 1
∥y − x∥q+1

For p, q ∈ [0, 1] and L, µ ≥ 0

These notions are dual to each other

a
when p = 1, this is the standard smoothness condition

b
when q = 1, this is called “strong convexity”
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Hölder Smoothness and L-smoothness

“We’re math guys. Of course we tweak hard problems into easy ones and use the same strategy as someone else
and call it a new result”

Hölder smoothness is very closely related to our standard L-smoothness2.

Lemma (Nesterov [8])

For f : Rd → R, (L, p)-Hölder smooth and Lδ ≥
[
1−p
1+p

1
δ

] 1−p
1+p L

2
1+p
δ

we have

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩ +
M

2
∥y − x∥2 +

δ

2

Lemma (Grimmer [4])

For sum of functions ḡ = λ1g1 + · · · + λmgm : Rd → R, each (Lj , pj )-Hölder smooth and

Lδ ≥
∑m

j=1

[ 1−pj
1+pj

· m
δ

] 1−pj
1+pj (λjLj )

2
1+pj

 we have

ḡ(y) ≤ ḡ(x) + ⟨∇ḡ(x), y − x⟩ +
Lδ

2
∥y − x∥2 +

δ

2

2
https://www.desmos.com/calculator/i93trcyqgq

https://www.desmos.com/calculator/i93trcyqgq


Motivation Tools “JG” Method Generalized curvature “Parameter-free” Conclusion

Choosing the right δ

In the general case, we get a convergence bound like this

Q(z̄N ; (x∗;λ, ν)) ≤
1

2
(∑N

t=1 ωt

)
 2d(Λr )∥x0 − x∗∥

∆
+

Lδ(Λr )

2
∥x0 − x∗∥2 +

δ

2

ωN (τN + 1) +
N∑
t=2

ωtτt



Simplifying (by choosing a nice ∆ > 0 and plugging in stepsizes gives)

Q(z̄N ; (x∗;λ, ν)) ≤
3Lδ(Λr )D

2

N2︸ ︷︷ ︸
shrinks with δ

+
δ

2
N︸︷︷︸

grows with δ

Where Lδ(Λr ) is a function of all the L′j s and p′j . If we want to make gap function as
small as possible, we just need to minimize this one-dimensional problem!

Remark

We will find optimal δ∗ (turns out to be ϵ/N), a function of number of iterates N,
which is a function of ϵ. Lδ(Λr ) is a function of δ∗, so this all boils down to one value:

Q(z̄N ; (x∗;λ, ν)) ≤
3LADAϵ ∥x0 − x∗∥2

N2
+ ϵ/2
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General Hölder Smooth Results

After some heavy algebra we get the following theorem:

Theorem

Taking each gj being (Lj , pj )-Hölder smooth, at most Nϵ = N > 0, that solvesa

m∑
j=1

cj
L̂

2
1+pj

j ∥x0 − x∗∥2

ϵ
2

1+pj

N
−

1+3pj
1+pj = 1

a
Here L̂j is taken as the maximum over reference set λjLj , where cj = m

2
1+pj

(2+2pj )

2
1+pj

Remark

Note: We really just need the sum to be less than 1.

Idea: Make N large enough to make each component small enough (less than 1/m),
so the entire sum is less than 1.
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General Hölder Smooth Results

Remark

If we want to make sure the total is less than a dollar, we can make sure each stack is
less than 20 cents! We will aim to upper bound each summand by 1/m

Figure: AI Coins
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General Hölder Smooth Results

This is to say, we can find each Nj by solving

cj
L̂

2
1+pj
j ∥x0 − x∗∥2

ϵ

2
1+pj

N
−

1+3pj
1+pj

j =
1

m
=⇒ Nj = (mcj )

1+pj
1+3pj

L̂

2
1+3pj
j ∥x0 − x∗∥

2
1+pj
1+3pj

ϵ

2
1+3pj

Corollary

In the same setting as above, we can bound the number of iterations to reach an (ϵ, ϵ/r)-optimal solution can be

bounded by any a

Nϵ ≥
m∑
j=1

c ′j
L̂

2
1+3pj

j ∥x0 − x∗∥
2+2pj
1+3pj

ϵ
2

1+3pj

(3)

where c′j := m

2
1+3pj

(2+2pj )

2
1+3pj

a
we could instead bound by the max over j
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Utilizing Lower Curvature

Let’s see how strong-convexity speeds up algorithms. We know from

smoothness that after N =
√

L∥x0−x∗∥2

ϵ steps:

⟨∇f (x∗), xN − x∗⟩︸ ︷︷ ︸
∇f (x∗)=0

+
µ

2
∥xN − x∗∥2 ≤ f (xN)− f (x∗) ≤ ϵ

Therefore, we can say

∥xN − x∗∥2 ≤ 2ϵ

µ

If we now restart the algorithm initialized at xN , we can reduce our
optimality gap in half after

N = Nϵ/2 =

√
L∥xN − x∗∥2

ϵ/2
= 2

√
L

µ
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Utilizing Lower Curvature

Lemma

Given optimality gap ϵ0 = f (x0)− f (x∗), we can achieve an ϵ1 = ϵ0/2
optimal solution in

N = 2
√
L/µ

iterations for (L, µ) smooth and strongly convex function.

Repeating this to reduce our initial gap f (x0)− f (x∗) to ϵ̃ takes

log2

(
f (x0)−f (x∗)

ϵ̃

)
of these restarting runs. In total

Nϵ̃ = 2 log2

(
f (x0)− f (x∗)

ϵ̃

)√
L

µ
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Generalized Lower Curvature

Theorem (jump scare 3)

Suppose each gj is (Lj , pj )-Hölder smooth and (µj , qj )-Uniformly convex with µj > 0,
then for ϵ̃ > 0, restarting achieves an ϵ̃-optimal solution in at most

m∑
j=1

c ′′j min

 2

2(qj−pj )

(1+3pj )(1+qj )

2

2(qj−pj )

(1+3pj )(1+qj ) − 1

,
log2(R/ϵ̃)

2

2(qj−pj )

(1+3pj )(1+qj )


(

Lj
1+qj

µj
1+pj [ϵ̃]qj−pj

) 2
(1+3pj )(1+qj )

with c′′j := 2

2pj
1+3qj m

1−pj
1+3pj (1 + qj )

2(1+pj )

(1+3pj )(1+qj )
[

1
1+pj

] 2
1+3pj and R = Q(z0; (x∗, λ∗, ν∗))

Remark

Choosing µADA
ϵ correctly, we get that µADA

ϵ ∥xN − x∗∥2 ≤ f (xN)− f (x∗) ≤ ϵ after N
steps. Therefore we get ϵ-accuracy after

Nϵ = O
(√

LADAϵ

µADA
ϵ

log(1/ϵ)

)
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Big Picture

Generalized Smoothness and Convexity let’s us utilize the same methods for a much
wider class of functions. In fact, we can compose the functions in a multitude of ways
that may completely remove any structure at all (consider LASSO). Regardless, we
really only need access to two constants, and a target accuracy ϵ

av

bv Heterogeneous Formula “Clean” Formula

Hölder Smooth
m∑
j=1

L̂

2
1+3pj
j ∥x0 − x∗∥

2+2pj
1+3pj

ϵ

2
1+3pj

√
LADAϵ

ϵ
∥x0 − x∗∥

HS & UC
m∑
j=1

log2 (R/ϵ)

 L
1+qj
j

µ
1+pj
j ϵ

qj−pj


2

(1+3pj )(1+qj )

log(1/ϵ)

√
LADAϵ
µADA
ϵ

Q(z0, z∗)

Table: General Order Rates
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“Parameter-free”
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Universal Methods

As mentioned before, if we consider a general composite problem

min
x∈X

f (x) + h(g1(x), . . . , gm(x))

gj (x) both (Lj , pj )-Hölder smooth and (µj , qj )-Uniformly convex. We have 4m
different (typically difficult to estimate) functional parameters alone. Universal
methods [8, 5, 3, 10, 6] are novel techniques to avoid this exact issue.

Remark

However, this is fixable. We can note that in the end, we just need one upper
smoothness constant and one lower smoothness constant, hopefully dependent only
on knowledge our target accuracy: ϵ

Remark

We currently aren’t there yet, unfortunately. However, if we assume that our set X is
bounded, and we have an upper estimate of its diameter, we can make some progress.
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Line Search of LADAϵ

Remark

This technically isn’t parameter free, and does require some bounded of
X to be both known and estimated. However, we claim this is much
easier to estimate than the composite mess of smoothness parameters.

Figure: “Parameter Free” Method
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Hölder Smooth Results

Remark

Whether we know the value or not, there is some true smoothness
constant LADAϵ that tells us how many iterations to runa:√

LADAϵ /ϵ∥x0 − x∗∥

a
The last run will take by far the longest

Because of clever, adaptive terminating conditions, the final result suffers
a small factor

√
2 and only an additive log.

Nuniversal
ϵ ≤ max


√

12
max{LADAϵ , d(Λr )}

ϵ
DX︸ ︷︷ ︸

same rate times
√

2

+

⌈
log2

(
max{L(Λr ), d(Λr )}

L0

)⌉
︸ ︷︷ ︸

negligible term

,

√
L0

ϵ
DX + 1︸ ︷︷ ︸

initial guess too large


.
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Conclusion
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Final Thoughts

• Convex, composite optimization is broad on its own. Adding
heterogeneity to the components allows for even more
robustness.

• It comes with the drawback of complexity, but only in the
work and analysis on our end, not in the actual rates of
convergence!

• We can wrap all the underlying constants into just two values,
dependent only on the target accuracy.

LADAϵ︸ ︷︷ ︸
handles all the upper curvature

µADA
ϵ︸ ︷︷ ︸

handles all the lower curvature

• Simplifying the problem statement with these
hyperparameters (and perhaps assuming knowledge of the
diameter of X ) allows for universal methods to arise.
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