
2.633Convergence Guarantees for Smooth and Convex Functionstcb@cnt@theo.2.6 [?]@cref@cref[theo][6][2]2.6[1][32][]33

JOHNS HOPKINS UNIVERSITY
Applied Mathematics and Statistics Department
Directed Reading Program

What Makes Gradient Descent Work (Well)?
Aaron Zoll

Contents

1 Background 2
1.1 Preliminary Concepts . 3

1.1.1 Linear Algebra Review . 3
1.1.2 Calculus Review . 8
1.1.3 (Structured) Classes of Functions . 11

1.2 Why Gradient Descent . 15

2 Convergence Guarantees for Gradient Descent 18
2.1 Smooth Functions . 19

2.1.1 Optimizing hk for the three different methods. 20
2.2 Smooth and Convex Functions . 24

2.2.1 F is the set of convex functions. 25
2.2.2 Equivalent Characterizations for Convex and Smooth Functions 27
2.2.3 Equivalent Characterizations of Strongly Convex Functions 30
2.2.4 Properties of Smooth and Strongly Convex Functions 31

2.3 Proofs for Gradient Descent Convergence Guarantees 32

1

1 Background
A ubiquitous goal in many areas of study, application, and daily life is to find the best outcome, to
optimize whatever situation is given to us. In a mathematical sense, this often resolves to minimizing
an object (perhaps subject to constraints). That is, one may wish to solve the following general
problem:

Problem – General Model For Optimization

Given function f : Rn → R and constraint set S ⊆ Rn, one wishes to solve the following:

p⋆ = inf
x∈S

f(x) (1.1)

In general, the minimum may not exists (i.e., f(x) = e−x), which is why we use the infimum, or
the largest lower bound. Note that 0 = infx∈R e−x, but there is no such x attaining this value. If
some point does attain the minimum, we call it a minimizer.

Definition 1.0.1 – Global and Local Minimizers

We say x⋆ is a global minimizer if

f(x⋆) ≤ f(x), ∀x ∈ S .

If x⋆ is only a minimizer nearby, we say x⋆ is a local minimizer. That is, for some r > 0,

f(x⋆) ≤ f(x), ∀x ∈ S ∩ {x : ∥x− x⋆∥ ≤ r} .

However, even when a (local) minimizer exists, finding the solution x⋆ ∈ argminx∈S f(x) often
proves difficult. Instead, we often attempt to get close to optimal using an iterative method (an
algorithm). Such methods are defined in their full generality below, but the basic idea is we utilize
an oracle O to gather information about a point (i.e., evaluation of a function, its gradient, its
hessian, if the point is included in a set, etc.). The information is then saved into an informational
set. The algorithm’s rules M dictate how to generate the next point, and a stop criterion Sε, based
on the target accuracy, decides whether the loop repeats or returns (a possibly newly generated
point) x̄.

Algorithm 1 – General Iterative Method (modified from [1, (1.1.3)])

Input: Starting point x0 and target accuracy ε > 0.
Initialize: k = 0, I−1 = ∅. Here k is the iteration counter and Ik is the informational set.

Main Loop:
1. Call oracle O at point xk.

2. Update informational set Ik = Ik−1 ∪ (xk, O(xk))

3. Apply rules M at xk to generate xk+1

4. Check stopping criterion Sε. If yes, output x̄. Otherwise k ← k + 1 and go to step 1.

2

While there are many ways to measure “close to optimal”, a common and perhaps natural
concept is to look at function value.

Definition 1.0.2 – Nearly Optimal (suboptimality gap)

Suppose x̄ ∈ S is the output of some iterative method. Suppose x⋆ solve (1.1). We say x̄
is an ε-optimal solution if

f(x̄)− f(x⋆) ≤ ε . (1.2)

Of course, in general, we will not know f(x⋆), so this will not act as a good stopping criterion.
We will find ways to mitigate this problem, either with new stopping criterion or ones we can check
that imply the above.

1.1 Preliminary Concepts

Before we begin, it is essential to understand the basics of linear algebra and calculus to proceed
with gradient descent. Many results extend beyond standard Euclidean space. We really just need
the structure of a Hilbert Space1, but we can consider Rn for simplicity.

1.1.1 Linear Algebra Review We begin with definition the fundamental place where all the
“stuff” lives that we want to work with. In general, gradient descent will handle multiple-dimensional
items: vectors. To ensure we’re all on the same page, we will start from the beginning and define
the necessary terms quite quickly.

In order to do linear algebra, we need numbers. Or at the very least, we need stuff to work
with–something that looks familiar (to the real numbers) but is general enough to handle more
complex settings. As we’ll see, the linearity of linear algebra, needs us to be able to add, scale
(multiply by a constant), and distribute the two operations. Thus, we need an ambient space to do
these calculations.

Definition 1.1.1 – Field

A set F equipped with two operations (+, ·) is a field if

1. Associativity: ∀ a, b, c ∈ F,

{
a + (b + c) = (a + b) + c

a · (b · c) = (a · b) · c

2. Commutativity: ∀ a, b ∈ F,

{
a + b = b + a

a · b = b · a

3. Identities: ∃ 0 ̸= 1 ∈ F such that ∀x ∈ F,

{
x + 0 = 0 + x = x

x · 1 = 1 · x = x

4. Inverses:
{
∀ a ∈ F, ∃ (−a) ∈ F s.t. a + (−a) = (−a) + a = 0
∀ 0 ̸= b ∈ F,∃ (b−1) ∈ F s.t. b · (b−1) = (b−1) · b = 1

5. Distributivity: ∀ a, b, c ∈ F , a · (b + c) = a · b + a · c

1Simply put, a Hilbert Space is one where we can do fundamental calculus and linear algebra. Limits exist and act
as we would expect. Distances, angles, orthogonality, linear operators all apply here too.

3

The above definitions may look a bit gnarly, but simply put, a field is a set with two operations
that keep elements in the set. This is called closure. These operations then come with the standard
properties that real numbers possess (and both rational numbers and complex numbers as they are
fields too). They can be undone with inverses, and there are elements that have seemingly no effect,
called identities. We will find all these properties are especially useful when considered vector
spaces. We begin with extending the concept to lists.

Definition 1.1.2 – List

For a fixed natural number n ∈ N, define an n-dimensional list over field F to be

Fn = {(x1, x2, ..., xn) : xj ∈ F 1 ≤ j ≤ 1}

Remark – Coordinates

We call xj the jth-coordinate

We can then define operations over a list directly from the structure of the field.

Definition 1.1.3 – Operations in Fn

• Addition: (+ : Fn × Fn → Fn) is defined component-wise:

(x1, ..., xn) + (y1, ..., yn) := (x1 + y1, ..., xn + yn)

• Scalar multiplication: (· : F× Fn → Fn) is component wise too:

λ︸︷︷︸
∈F

· (x1, ..., xn)︸ ︷︷ ︸
∈Fn

:= (λx1, ..., λxn)

• (additive) Identity: needs to hold that 0 + x = x + 0 = x, so we define 0 = (0, 0, ..., 0)

• (additive) Inverse: need for x +−x = 0, so we define −x = (−x1, ...,−xn)

Very naturally, lists let us handle multiple elements of a field simultaneously. If we consider
an objects location at a particular time, we may consider the list (x, y, z, t), where (x, y, z) are the
three coordinate positions. If this object moves 2 units to the left and 3 units vertically over the
period of 4 seconds, we can add (−2, 0, 3, 4) to its previous value. Lists gives us the precisely analog
to be able to handle Vector Spaces. For the most part, these are going to be analogous, but for
mathematical maturity, we should understand that vector spaces are the more precise tool we
want to utilize.

Definition 1.1.4 – Vector Space (over a field)

A Vector Space over a field F is a set V along with
{

+ : V × V → V

· : F× V → V
such that the

following holds

1. u + v = v + u for all u, v ∈ V

4

2. (u + v) + w = u + (v + w) for all u, v, w ∈ V

3. There exists 0 ∈ V such that 0 + v = v + 0 = v for all v ∈ V

4. For all v ∈ V there exists a (−v) = v−1 ∈ V (simply notational) such that v + (−v) =
(−v) + v = 0

5. 1v = v for all v ∈ V (1 being the multiplicative identity in F)

6.
{

a(u + v) = au + av ∀a ∈ F, u, v ∈ V

(a + b)v = av + bv ∀a, b ∈ F, v ∈ V

Remark – Notation

The condition that these functions exist can also be called “closure under addition (linearity)
and closure under scalar multiplication (homogeneity)”{

+ : V × V → V

· : F× V → V

• Just for ease, we typically can drop the boldness of vectors based on context. Sometimes
we put an arrow over, sometimes a bar (I dislike because a bar looks like conjugation).
It really just depends on what notation you choose.

• We also drop the · for scalar multiplication typically.

• Therefore v = v = v̄ = v⃗

• and a · v = av going forward.

Typically in reviewing linear algebra, one would want to study fundamental aspects like linear
independence, span, bases, linear maps, eigenvalues, etc. However, we don’t need any of those for
standard gradient descent! We really just need to following ways to measure how close two vectors
are to each other. That is, we want to measure some form of “distance” and “orthogonality” (or
angle).

Definition 1.1.5 – Norms

A norm over a vector space V is a function ∥ · ∥ : V → F satisfying

• (nonnegativity): ∥x∥ ≥ 0, for all x ∈ V . ∥x∥ = 0 if and only if x = 0.

• (positive homogeneity): ∥λx∥ = |λ| · ∥x∥ for any x ∈ V and λ ∈ F.

• (triangle inequality): ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ F .

The above definition gives us a notion of length of a vector. Since vector spaces have addition
operations and suitable inverses, we can “subtract” two vectors to produce a new one. Applying the
norm to that vector yields a proper distance.

5

Definition 1.1.6 – Distance

Given x, y ∈ V , the distance between x and y, induced by norm ∥ · ∥, is defined as

d∥·∥(x, y) = ∥y − x∥ .

Remark – Examples of Norms

The following are all norms in Rn:

• ∥x∥1 := ∑n
j=1 |xj |

• ∥x∥2 :=
√

(∑n
j=1 x2

j)

• ∥x∥∞ := maxj |xj |

• ∥x∥p := (∑n
j=1 |xj |p)

1
p , p ≥ 1

The final object we will need from linear algebra is a way of relating two vectors to each other.
In a sense, this next tool is all we need, as we can then suitably induce a norm. As we’ll see, an
inner product will be the best tool to associate two (possibly non-distinct) vectors.

Definition 1.1.7 – Inner Product

An inner product over a vector space V is a function ⟨·, ·⟩ : V × V → R satisfying

1. (positive definiteness): ⟨x, x⟩ ≥ 0 for any x ∈ V . ⟨x, x⟩ = 0 if and only if x = 0.

2. (linearity): ⟨ax + by, z⟩ = a ⟨x, z⟩+ b ⟨y, z⟩ for a, b ∈ F and x, y, z ∈ V .

3. (quasi-symmetry): ⟨x, y⟩ = ⟨y, x⟩ for x, y ∈ V

The last requirement says that flipping the order in the inner product conjugates the value. This
is really only notable when the underlying field in complex. We will only consider Rn going forward,
in which the inner product (now just a dot product) is now linear in both components and fully
symmetric!

Remark – Inducing a norm

Earlier mentioned, the inner product is all we need. In a similar vain to inducing a distance
from a norm, one can induce a norm from an inner product:

∥x∥ :=
√
⟨x, x⟩

Given this relationship between inner products and (induced) norms, we can derive an incredibly
powerful and useful result that lets us bound the size of an inner product (an “association” of two
vectors) to the product of their magnitudes.

6

Proposition 1.1.8 – Cauchy Schwarz Inequality

The inner product and norms of two vectors are related as follows:

| ⟨x, y⟩ | ≤ ∥x∥∥y∥ (1.3)

Proof. We will consider the case where F = R and V = Rn. However, the result holds in generality.
Consider x, y ∈ Rn and t ∈ R. Then,

0 ≤ ⟨x + ty, x + ty⟩ (by positive definiteness)
= ∥x∥2 + 2t ⟨x, y⟩+ t2∥y∥2 . (linearity and definition of the induced norm)

Note the above is a quadratic in t. Here, x, y, and thus their norms are just fixed scalars. Since the
quadratic is facing upwards (t2 ≥ 0) and is nonnegative for all t, it must hold that the discriminant
(the b2 − 4ac part in the square root of the quadratic formula) is nonpositive. Therefore:

(2 ⟨x, y⟩)2 − 4∥x∥2∥y∥2 ≤ 0
4(⟨x, y⟩)2 ≤ 4∥x∥2∥y∥2 .

Dividing by 4 and taking the square root of both sides yields the desired result.

We can then immediately define the notion of an angle between two vectors. The above inequality
gives us that

| ⟨x, y⟩ |
∥x∥∥y∥

≤ 1, ∀x, y ∈ V .

In other words,
−1 ≤ ⟨x, y⟩

∥x∥∥y∥
≤ 1 .

Therefore, we can define the angle as follows:

Definition 1.1.9 – Angle Between Vectors

For any x, y ∈ V , define the angle θx,y as

θx,y = cos−1
(⟨x, y⟩
∥x∥∥y∥

)
.

We use cosine in the above definition for two reasons. The first is that this result naturally
extends from law of cosines. Secondly, we get a natural association for two vectors forming a “right
angle”. When the inner product of two (non-zero) vectors is zero, then the angle between them
is precisely 90o (or π/2 in radians). Lastly, we introduce the notion of orthogonality. In a sense,
this means that two vectors are “as independent” as they can get. However, for our application,
orthogonality will tie to the idea of descent.

Definition 1.1.10 – Orthogonality

Two vectors x, y ∈ V are said to be orthogonal if

⟨x, y⟩ = 0

7

https://proofwiki.org/wiki/Cosine_Formula_for_Dot_Product

1.1.2 Calculus Review With the basic notions of linear algebra out of the way, we can relax
ourselves to consider a more familiar setting: Rn. However, I would recommend keeping in mind
that almost all of the following will extend to any setting that allows a suitable inner product
(even infinite dimensional spaces!). With our restriction to Rn, we will also consider the standard
Euclidean inner product:

⟨x, y⟩ = x1y1 + · · ·+ xnyn . (1.4)

Note that the induced norm is then

∥x∥ =
√
⟨x, x⟩ =

√
x2

1 + · · ·+ x2
n . (1.5)

We can now move onto defining the star of the show. The gradient. Note that the following
definition is not entirely useful for us as is. It doesn’t quite explain why gradient leads to descent,
nor does it imply anything about “pointing in the steepest direction.” We will observe the latter
two claims more in the following sections, but without further ado:

Definition 1.1.11 – Multidimension Derivatives

The partial derivative of a function f : Rn → R, at the point x = (x1, . . . , xn) is defined as

∂f(x)
∂xj

:= lim
h→0

f(x1, . . . , xj + h, . . . , xn)− f(x1, . . . , xn)
h

. (1.6)

If each partial derivative exists for all j = 1, . . . , n, the the function is said to be differentiable
at x. If all the partials exist for all x ∈ Rn, the function itself is said to be differentiable.

Given differentiable function f : Rn → R, the gradient is itself a function ∇f(·) : Rn → Rn

defined as

∇f(x) =

∂f(x)
∂x1

∂f(x)
∂x2...

∂f(x)
∂xn

Note that the partial derivative above is defined in the following way: how much does the

function value change if we move a small amount in the direction of a single coordinate, relative to
how much we moved? In a sense, this is very similar to the standard “rise over run” calculation of
a slope, but just pointing in a particular direction. This direction is entirely arbitrary, but useful
because of how we constructed our function (if you know further linear algebra, this is precisely by
focusing on a particular basis element). However, we could have perturbed in any direction, and
found the relative change in function value.

Definition 1.1.12 – Directional Derivative

Given a function f : Rn → R and unit vector v ∈ Rn (that is, ∥v∥ = 1), the directional
derivative at x ∈ Rn is defined as

f ′(x; v) := lim
h→0

f(x + hv)− f(x)
h

(1.7)

8

While the definition of a gradient might not seem immediately useful, we do get for free a
multidimensional Taylor’s theorem. In a similar way to constructing the linear model of a one-
dimensional function to pass through the function at a point and have the same slope, we can
approximate a differentiable function at a point analogously.

Definition 1.1.13 – Linear Approximation

The linear approximation of a differentiable function f : Rn → R at x ∈ Rn is

ℓf,x(y) := f(x) + ⟨∇f(x), y − x⟩ .

Note that ℓf,x(x) = f(x) and ∇ℓf,x(x) = ∇f(x). It can further be shown that the error is of
order o(t). That is, for small distances away from x, the error is shrinking faster than linear.

Proposition 1.1.14 – Taylor’s Theorem (first order)

Given differentiable function f and its linear approximation, the error is first order.

f(y) = ℓf,x(y) + o(∥y − x∥)

where o(h) implies that limh→0+ o(h)/h = 0 and o(0) = 0.

This proposition leads to a rather nice result about gradients. While the definition of a gradient
may seem like a useful tool for collecting all the partial derivatives, the following corollary highlights
the relationship between gradients and directional derivatives. That is, the gradient is the precise
vector that represents the directional derivatives.

Corollary 1.1.15 – Representation of Directional Derivatives

Given differentiable f : Rn → R, x ∈ Rn and unit vector v ∈ Rn the following relationship
holds:

f ′(x; v) = ⟨∇f(x), v⟩ (1.8)

Proof. Simply unpacking definitions,

f ′(x; v) = lim
h→0

f(x + hv)− f(x)
h

= lim
h→0

f(x) + ⟨∇f(x), (x + hv)− x⟩+ o(∥(x + hv)− x∥)− f(x)
h

= lim
h→0

⟨∇f(x), hv⟩+ o(∥hv∥)
h

= lim
h→0
⟨∇f(x), v⟩+ o(h)

h
= ⟨∇f(x), v⟩

We conclude this section with a few more definitions that will be useful for our analysis. First,
we define a neighborhood around a point. Often, as a consequence of the calculus involved and (lack
of) structure of the function we aim to minimize, conditions are only considered locally.

9

Definition 1.1.16 – Ball Neighborhood B∥·∥(x, r)

Given a point x ∈ Rn, a radius r ≥ 0 and a norm ∥ · ∥, we define the ball around that point:

B∥·∥(x, r) := {y ∈ Rn : ∥y − x∥ < r} .

When we consider the standard Euclidean norm ∥ · ∥2, we can drop the subscript. We can
consider the slightly larger set B̂∥·∥(x, r) := {y ∈ Rn : ∥y− x∥ ≤ r} as well. Below are visualizations
of different normed balls in R2. Again, we will really only consider the 2-norm, as the standard

Figure 1: p-norms in R2

inner product induces it, and we will drop the subscript to mean ∥ · ∥ = ∥ · ∥2 unless otherwise noted.
However, it is worth noting that other settings do utilize different norms.

As we run our iterative method, we will naturally obtain a sequence of values. If we utilize the
optimality condition outlined in 1.0.2, it makes sense to look at the sequence f(xk)− f(x⋆) where
xk is the kth iterate of some method.

Definition 1.1.17 – Relaxation Sequence

If a sequence {ak}∞k=0 satisfies
ak+1 ≤ ak ,

we call the sequence a relaxation sequence.

Note that since x⋆ is a minimizer, it should hold that f(xk)− f(x⋆) ≥ 0. That is, the sequence
{f(xk)− f(x⋆)}∞k=0 is bounded below. If it is also a relaxation sequence, then the following lemma
states the sequence must converge! If zero is the best lower bound. That is, if for any δ > 0, there is
some N where f(xN)− f(x⋆) < δ, then {f(xk)− f(x⋆)}∞k=0 converges to 0 and the iterative method

10

https://ozanerhansha.medium.com/when-pi-doesnt-equal-3-14-73be75b2b90f

converges to a minimizer!

Proposition 1.1.18 – Monotone Convergence Theorem

Let {ak}∞k=0 be a relaxation sequence of real numbers with infk ak = 0 then the sequence
converges to zero and we write

ak → 0 .

To conclude this section, we must define notions of convergence. We can suppress the rigorous
definitions for an real analysis course, but in optimization, it is useful to characterize how quickly a
sequence converges.

Definition 1.1.19 – Notions of Convergence

Suppose ak → 0. If there exists constant 0 < τ < 1 and C > 0 such that

ak ≤ Cτk ,

we say {ak}∞k=0 convergence linearly.

If instead there are constants C > 0 and q > 0 such that

ak ≤
C

kq
,

we say the sequence converges sublinearly with rate q.

Some may note that this would imply exponential decay, and it does! However, we say the
convergence is linear because ak+1 = τak. For sublinear rates, we do not guarantee as good of
convergence, but unfortunately, most iterative schemes we see will be sublinear.

1.1.3 (Structured) Classes of Functions The above tools will allow us to analyze methods
like gradient descent, but so far, we have no guarantees that any iterative method will converge.
Certain classes of functions behave better than others; gradient descent converges faster given
structure. While optimizers aim to find the best solution to the most accurate-to-reality model,
we often must sacrifice the precision of the model for the convergence of a solution. Aspects like
continuity and differentiability help, but we can do better.

Definition 1.1.20 – Convex Function

A function f : Rn → R is said to be convex if for any t ∈ [0, 1]

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ Rn .

The above can be written slightly differently, one can say equivalently, that

f(y + t(y − x)) ≤ f(y) + t(f(y)− f(x)) .

That is, if one draws a line segment from f(y) to f(x) it will always upper bound the function
evaluated at any point between y and x. For an interactive 3-D plot of a convex function, click here.

In general, convex functions are a great place to start. While they need not be differentiable,
they must be continuous. Furthermore, minima are unique, and when a local minimizer exists, it

11

https://www.desmos.com/3d/cnmbsrrcki

Figure 2: Convex Functions

must also be a global one. One way to think about convex functions is that they “curve upwards.”
However, there is a more rigorous characteristic of convex functions.

Proposition 1.1.21 – Lower Linearization

Suppose f : Rn → R is convex and differentiable. Then for any x ∈ Rn,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , ∀y ∈ Rn.

Proof. Suppose f is convex. Then, for all t ∈ (0, 1), tf(y) + (1− t)f(x) ≥ f(ty + (1− t)x). In other
words,

f(y) ≥ f(x + t(y − x))− f(x)
t

+ f(x) .

Letting t→ 0 and using Corollary 1.1.15 gives the desired characterization.

What the above proposition states is that the local linear approximation outlined in Propo-
sition 1.1.14 is a lower bound. That is, for any convex function f , the linear approximation ℓf,x

gives a global lower bound on the function itself. That means that any minima must lower above
that line. As we will see, many iterative methods utilize this idea of successively maximizing lower
bounds and minimizing upper bounds to squeeze in on the optimal value.

While convex function give a great place to start, often they do not proving rich enough structure
for gradient descent to work effectively. The following class of functions really sets the stone for
gradient descent to work well.

12

Definition 1.1.22 – L-smooth Functions

A function f : Rn → R is L-smooth if there exists an L <∞ such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn .

There is another way to state the above definition. Utilizing the class of Lipschitz functions:

|f(x)− f(y)| ≤ L∥x− y∥, x, y ∈ Rn.

One can say that f is L-smooth if and only if ∇f is L-Lipschitz. In essence, Lipschitz functions are
ones whose gradients are bound in size. That is, the function isn’t doesn’t change too rapidly. For
L-smooth functions, one can say that its gradients don’t change too rapidly. In short:

f is L− smooth =⇒ we can trust nearby gradients.

This will be the key to utilizing gradient descent! If the gradients change at a controlled pace, then
when we “move in the direction of a gradient” we can ensure that this movement is in the “right
direction” for a enough time to take that step. More to see later,

Notably L-smooth functions possess many properties. One of the more useful characterizations
is that they can be bounded above globally by a quadratic. What globally means in this context is
that the curvature, or the coefficient attached to the analogous x2 term, is precisely related to L.

Lemma 1.1.23 – Descent Lemma

Suppose f : Rn → R is L-smooth and convex. Then,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2, ∀x, y ∈ Rn .

That is, once we know f has L-Lipschitz continuous gradient, and it is convex, we can immediately
know that any quadratic centers at the point (x, f(x)) with the exact same gradient at x, and
curvature L, will upper bound the entire function. We will utilize this proposition in the next
chapter to motive gradient descent. To play around with this quadratic upper bound, click here.

Proof. Consider the function ϕx(t) = f(x + t(y − x)) for t ∈ [0, 1]. Note that ϕx(0) = f(x)
and ϕx(1) = f(y). Furthermore, the chain rule gives us that ϕ′

x(t) = ⟨∇f(x + t(y − x)), y − x⟩.
Therefore, by fundamental theorem of calculus,

f(y)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t)dt =

∫ 1

0
⟨∇f(x + t(y − x)), y − x⟩ dt

13

https://www.desmos.com/calculator/sybazxt9yh

Subtracting ⟨∇f(x), y − x⟩ from both sides, we get

f(y)− f(x)− ⟨∇f(x), y − x⟩ =
∫ 1

0
⟨∇f(x + t(y − x))−∇f(x), y − x⟩ dt

≤
∫ 1

0
∥∇f(x + t(y − x))−∇f(x)∥∥y − x∥dt

≤
∫ 1

0
L∥(x + t(y − x))− x∥∥y − x∥dt

=
∫ 1

0
Lt∥y − x∥2dt

= L

2 ∥y − x∥2

Where the first inequality comes from Cauchy Schwarz Eq. (1.3). The second comes from the
Lipschitz continuous gradient. And the rest is simple rearrangement.

Remark

While L-smooth functions are always differentiable, they may not admit a second derivative.
However, if a function is L-smooth and twice differentiable, then the following holds:

∥f ′′(x)∥ ≤ L, ∀x ∈ Rn .

Note that this L isn’t unique! If f is L-smooth, then it is L̂-smooth for any L̂ ≥ L.

Conversely, we define strongly convex functions as those possessing a uniform quadratic lower
bound.

Definition 1.1.24 – Strongly Convex Functions

A function f : Rn → R is µ-strongly if there exists a µ ≥ 0 such that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2 ∥y − x∥2, ∀x, y ∈ Rn .

There are plenty of other characterizations of strong convexity, but the following helps visualize
the lower bound on its curvature, while sharing a dual perspective to L-smoothness.

Remark

If a function is µ-strongly convex and twice differentiable, then the following holds:

∥f ′′(x)∥ ≥ µ, ∀x ∈ Rn .

Note that this µ isn’t unique! If f is µ -strongly convex, then it is µ̂-smooth for any µ̂ ≤ µ.

Below illustrates smooth and strong convexity. The function f(x) (in orange) can be lower
bounded by any linear approximation (in blue). This is a property of convexity. However, it can
further be lower bounded by a quadratic approximation (in red), as well as upper bounded by a
quadratic (in green). If the center point, that is where all the curves intersect, were shifted, we would
still get lower/upper bounds with the same curvature! You can play around with strongly convex
functions here. Note that unlike smooth functions, strongly convex ones need not be differentiable!

14

https://www.desmos.com/calculator/f2nvtdsza2

Figure 3: Smoothness and Strong Convexity

1.2 Why Gradient Descent

Let’s begin with mentioning two important properties of the gradient. The first will require some
new work (and a quite technical definition), but the second we have already seen before.

Definition 1.2.1 – Sublevel Sets and their Tangents

We denote the sublevel set for given function f : Rn → R at α ∈ R by

Lf (α) := {x ∈ Rn : f(x) ≤ α}

Consider the set of directions tangent to Lf (f(x)) at x:

Sf (x) :=
{

s ∈ Rn : s = lim
k→∞

yk − x

∥yk − x∥
, for some yk → x with f(yk) = f(x) ∀k

}

The above definition is fairly involved, but the general idea is that Lf (α) denotes all the points
in Rn that get mapped to a value at most α. Consider the pair (x, f(x)), we can consider all the
directions that do not change the function value.

Considering a mountain range, the sublevel set are all the places you could stand that would
be below a specific altitude, and the tangents are direction you could walk without changing your
elevation!

Lemma 1.2.2 – Gradients Point away from Level Sets

If s ∈ Sf (x), then ⟨∇f(x), s⟩ = 0. That is,

∇f(x) is orthogonal to the level sets at x

Proof. Since f(yk) = f(x), we have

f(yk) = f(x) + ⟨∇f(x), yk − x⟩+ o(∥yk − x∥) = f(x) .

Therefore, ⟨∇f(x), yk − x⟩ + o(∥yk − x∥) = 0. Dividing by ∥yk − x∥ and taking limits yields the
result.

The above lemma states the gradient points away from the directions that don’t change the
function value. In particular, they point away as much as they can.

15

Remark

Thus, if we want to change function value (either increase or decrease), we should move in
the direction of the gradient (or perhaps its negative).

The following property will further justify this claim. Recall from Corollary 1.1.15 that the
gradient of a function f : Rn → R “represents” all the directional derivatives. That is, given
a gradient at a point, ∇f(x), one can evaluate the “rate of change” in any direction by simply
evaluating an inner product:

f ′(x; v) = ⟨∇f(x), v⟩ .

If we apply Cauchy Schwarz inequality 1.1.8, we see that

−∥∇f(x)∥∥v∥ ≤ ⟨∇f(x), v⟩ ≤ ∥∇f(x)∥∥v∥ .

Since ∥v∥ is a unit vector, we can see that the most we can decrease (or increase) is ∥∇f(x)∥, and
this value can be achieved by choosing

v = − ∇f(x)
∥∇f(x)∥ .

Remark – Steepest Descent

Moving in the direction of the negative gradient, −∇f(x), gives the fastest local decrease of
the function f(·) at the point x!

We can now conclude this section with perhaps the most fundamental fact in optimization
theory.

Theorem 1.1 – First-Order (local) Optimality Conditions

Let x⋆ be a local minimum to a differentiable function f(·). Then

∇f(x⋆) = 0 .

Proof. Since x⋆ is a local minimizer of f(·), there exists an r > 0 where f(y) ≥ f(x⋆) for all
y ∈ B(x⋆; r). Since f is differentiable, by Proposition 1.1.14,

f(y) = f(x⋆) + ⟨∇f(x⋆), y − x⋆⟩+ o(∥y − x⋆∥) ≥ f(x⋆), ∀y ∈ B(x⋆; r).

Considering the inequality, subtracting f(x⋆) and again dividing by ∥y − x⋆∥ and taking limits as
needed, we see that

0 ≤ ⟨∇f(x⋆), v⟩ = f ′(x; v), ∀v ∈ Rn! (1.9)
Considering v = −∇f(x∗)/∥∇f(x∗) implies that

∥∇f(x∗)∥ ≤ 0 .

By the nonnegativity of the norm, it must hold that

∥∇f(x∗)∥ = 0 =⇒ ∇f(x⋆) = 0 .

16

Note that (1.9) implies that all directional derivatives are nonnegative. That is, any direction
that one moves from the local minimizer must increase (or remain constant) the function value.

Further note that the converse may not hold in general. The gradient could be zero at x, but
f(x) may not be a minimum. Consider the function

f(x, y) = x2 − y2, ∇f(0, 0) =
[
0
0

]

However, if f is also assumed to be convex, then the converse holds! Convexity ensures that

Figure 4: Graph of f(x, y) = x2 − y2

f(y) ≥ f(x⋆) + ⟨∇f(x⋆), y − x⋆⟩ , ∀y ∈ Rn ,

and when ∇f(x⋆) = 0, we get
f(y) ≥ f(x⋆), ∀y ∈ Rn .

Since this holds for all y, not just in a small neighborhood around x⋆, this result implies that local
minimizers for convex function are in fact global. Thus, we get our second big theorem.

Theorem 1.2 – First-Order Optimality Conditions

Let f(·) be a convex differentiable function. Then the following are equivalent.

1. x⋆ is a local minimum

2. x⋆ is a global minimum

3. ∇f(x⋆) = 0

Therefore, we can describe the second way to check for optimality, one we can actually perform
in an algorithm as it assumes no knowledge of x⋆.

17

Definition 1.2.3 – Nearly Optimal (gradient norm)

Let x̄ be the output of some iterative method. Given target accuracy ε > 0, we say x̄ is
ε-optimal if

∥∇f(x̄)∥ ≤ ε

We now have all the tools and knowledge to introduce our Gradient Descent method. The
concept is simple, but the theory goes very deep. There are many ways we can tweak this method
to ensure better convergence rates. Further assumptions on f(·) can also speed up there algorithm.
However, in its base form, the algorithm works as follows:

Algorithm 2 – Gradient Descent

Input: x0 ∈ Rn, target accuracy ε > 0 and stepsizes hk

For k = 0, 1, 2, . . .

1. xk+1 ← xk − hk∇f(xk)

One may ask: when does Algorithm 2 terminate? How many iterations does it take? What
structure and geometry of f(·) is desired? How must we choose stepsizes hk? Can we guarantee
anything about the suboptimality gap (how close is f(x̄) to f(x⋆))? What about size of the gradients
∥∇f(x̄)∥? All of this will be discussed in the next section.

Figure 5: Medium

2 Convergence Guarantees for Gradient Descent
This section will primarily focus on the convergence results for applications of Algorithm 2. Note
that this algorithm is essentially only one line, with barely any freedom to alter its procedure. We
really only have leverage over the initial point, x0 ∈ Rn, the target accuracy ε > 0, and the stepsizes
hk. This information alone will typically not guarantee much. We won’t know how many iterations
to run to ensure small suboptimality gap or small gradient norms. We may not even guarantee
convergence at all! However, with known structure of the function we are aiming to minimize, we
can readily solve these issues.

18

https://medium.com/@ilyasaoudata/you-should-understand-backpropagation-in-regression-before-diving-into-neural-networks-5e08d48d69e6

2.1 Smooth Functions

For ease of notation, we will define the following classes of function. Later on, we will further restrict
to convex functions with the same properties.

Definition 2.1.1 – The Class of L-Smooth Functions

Let CL(Rn) denote the class of differentiable functions f : Rn → R with Lipschitz continuous
gradient

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn .

We first note a pleasant property of smooth functions. While there exist methods to generalize
the notion of a gradient to nondifferntiable functions, L-smooth functions are always differentiable.
Therefore, it makes sense to apply gradient descent to such functions. Unpacking the above definition,
it says that for x and y close together, say y = x + hv for unit vector v ∈ Rn and h small. Then
∥∇f(x + hv)−∇f(x)∥ ≤ hL. When considering v = −∇f(x), a gradient step, we note that

∥∇f(xk+1)−∇f(xk)∥ ≤ hL .

That is, the gradient (or direction we are moving) where we end up each iteration is
not too different from where we started. In other words, we can “trust our gradients” each
step. If L is large, we just need to make h smaller. In fact, we can optimize this value of h to
guarantee the most descent each step!

There are many possible values of hk one can choose. However, let’s start by considering three
possible strategies.

Remark – Possible Stepsize Rules

1. The sequence hk is chosen in advance. For example,

hk = h > 0, (constant step)

hk = h√
k + 1

, (decaying step)

2. Full relaxation (find the greastest functional decrease):

hk = argmin
h≥0

f(xk)− h∇f(xk)

3. The Armijo Rule: find xk+1 = xk − h∇f(xk) such that

α
〈
∇f(xk), xk − xk+1

〉
≤ f(xk)− f(xk+1) ≤ β

〈
∇f(xk), xk − xk+1

〉
(2.1)

where 0 < α < β < 1 are fixed

Comparing these strategies, we note that the first is by far the simplest. It is used in many
algorithms, especially ones where minimizer are guaranteed to be global if they exists (i.e., convex
optimization). The second is completely theoretical as even in one-dimensional settings, finding the
minimizer h⋆ may be infeasible. The third is complex, but used in the many practical algorithms.
The geometric interpretation is explained below.

19

Figure 6: Geometric Interpretation of Armijo Rule

Consider the iterates xk and xk+1 = xk−hk∇f(xk). Now consider the function value at f(xk+1).
This is a one-dimensional function of the stepsize hk. Define

ϕ(h) := f(xk+1) = f(xk − h∇f(xk)), h ≥ 0 . (2.2)

Recall the conditions for the Armijo rule, as well as how we construct xk+1 result in h being a
suitable stepsize if

ϕ2(h) ≤ ϕ(h) ≤ ϕ1(h), ϕ1(h) = f(xk)− αh∥∇f(xk)∥2, ϕ2(h) = f(xk)− βh∥∇f(xk)∥2 . (2.3)

Exercise 1

Check that the above condition implies the Armijo rule (2.1). That is given 0 < α < β < 1,
for any h satisfying

ϕ2(h) ≤ ϕ(h) ≤ ϕ1(h) ,

then

α
〈
∇f(xk), xk − xk+1

〉
≤ f(xk)− f(xk+1) ≤ β

〈
∇f(xk), xk − xk+1

〉
Geometrically, the Armijo rule can be seen as finding an h that lies in the black region. The

thick red line is the objective function f(x), and the thin black function is ϕ(x). The upper and
bounding linear functions ϕ1 and ϕ2 are the dotted red and blue respectively. The desmos link is
attached if you wish to play around.

2.1.1 Optimizing hk for the three different methods. Let’s estimate the performance of
gradient descent for L-smooth functions f ∈ CL(Rn) that are bounded below. Consider a single
gradient step

xk+1 = xk − h∇f(xk) .

20

https://www.desmos.com/calculator/oahkt7wzj1
https://www.desmos.com/calculator/oahkt7wzj1

Recalling an equivalent characterization of L-smoothness, the result from Lemma 1.1.23 says

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+ L

2 ∥x
k+1 − xk∥2

= f(xk) +
〈
∇f(xk), xk − h∇f(xk)− xk

〉
+ L

2 ∥x
k − h∇f(xk)− xk∥2

= f(xk)− h∥∇f(xk)∥2 + h2

2 L∥∇f(xk)∥2

= f(xk)− h(1− h

2 L)∥∇f(xk)∥2 .

Therefore, to get the most decrease each step, we simply need to solve the one-dimensional problem:

min
h
−h(1− h

2 L) =⇒ h⋆ = 1
L

.

Exercise 2

Verify that h⋆ is in fact the minimizer of ∆(h) = −h(1− h
2 L) (hint: consider the first and

second derivatives).

We have now proved the following lemma.

Lemma 2.1.2 – Descent Lemma II

For f ∈ CL(Rn), one step of gradient descent decreases the value of the objective function

f(xk+1) ≤ f(xk)− 1
2L
∥∇f(xk)∥2

Considering our stepsize scheme, for constant stepsizes hk = h = α/L for α ∈ (0, 2), then

f(xk+1) ≤ f(xk)− 1
L

α(1− α

2)∥∇f(xk)∥2 .

Of course, the optimal choice is still hk = 1
L , or choosing α = 1, but we can guarantee descent for

any α ∈ (0, 2).

Remark

Note that setting qxk,α(x) := f(xk) +
〈
∇f(xk), x− xk

〉
+ L

2α∥x − xk∥2 acts as a quadratic
approximation for f(·) at xk. For α = 1, this is the precisely the descent lemma. Regardless,
computing its minimizer

argmin qxk,α(x) = xk − α

L
∇f(xk)

demonstrates that minimizing the quadratic upper bound yields the exact method for gradient
descent!

For α > 1, we may overshoot the minimizer, but this is not an issue, as long as we make
descent. Another desmos graph to see this in action!

Considering the Armijo rule, we note that from Exercise 1 that

f(xk+1) ≥ f(xk)− βhk∥∇f(xk)∥2 .

21

https://www.desmos.com/calculator/jzct403rnw

However, we have previously seen that

f(xk+1) ≤ f(xk)− hk(1− hk

2)∥∇f(xk)∥2 ,

which concludes that hk ≥ 2
L(1− β). Using the other condition of Exercise 1, we have

f(xk+1) ≤ f(xk)− αhk∥∇f(xk)∥2 ≤ f(xk)− 2
L

α(1− β)∥∇f(xk)∥2 .

Letting ω = 2α(1− β), we again recover the notation that

f(xk+1) ≤ f(xk)− ω

L
∥∇f(xk)∥2 , (2.4)

achieving the optimal decrease when α = β = 1
2 . We are now ready to conclude something about

gradient descent.

Theorem 2.1 – Gradient Norm Bound

For f ∈ CL(Rn), running gradient descent with stepsizes hk resulting in (2.4) yields the
following inequality

g⋆
N ≤

√
L(f(x0)− f⋆)

ω(N + 1) , (2.5)

where g⋆
N := min0≤k≤N ∥∇f(xk)∥

Proof. Since (2.4) holds for each k = 0, . . . , N , we can sum each inequality

f(x1) ≤ f(x0)− ω

L
∥∇f(x0)∥2

+ f(x2) ≤ f(x1)− ω

L
∥∇f(x1)∥2

+ f(x3) ≤ f(x2)− ω

L
∥∇f(x2)∥2

+
...

+ f(xN+1) ≤ f(xN)− ω

L
∥∇f(xN)∥2 ,

noting that we can cancel most of the terms

���
f(x1) ≤ f(x0)− ω

L
∥∇f(x0)∥2

+ ���
f(x2) ≤���

f(x1)− ω

L
∥∇f(x1)∥2

+ ���
f(x3) ≤���

f(x2)− ω

L
∥∇f(x2)∥2

+
...

+ f(xN+1) ≤�
���

f(xN)− ω

L
∥∇f(xN)∥2

=⇒ f(xN+1) ≤ f(x0)− ω

L

N∑
k=0
∥∇f(xk)∥2

22

Rearranging, we can conclude that

ω

L

N∑
k=0
∥∇f(xk)∥2 ≤ f(x0)− f(xN+1) ≤ f(x0)− f∗ , (2.6)

as f∗ is a lower bound for all of f(·). Therefore, the series is bounded as N →∞, and consequently,

∥∇f(xk)∥ → 0, as k →∞ .

However, we can say more than existence of convergence, we can quantify the rate! Considering
that an average of nonnegative values upper bounds the minimum (the average of a bunch of test
scores clearly is higher than the lower score), we can rearrange (2.6) to conclude

g⋆
N ≤

√
L(f(x0)− f⋆)

ω(N + 1) .

As we saw, the optimal decrease achieves ω = 1
2 , so our first convergence bound says that

running Algorithm 2 with hk = h = 1
L results in

min
0≤k≤N

∥∇f(xk)∥ ≤
√

2L(f(x0)− f⋆)
N + 1 .

If we want to guarantee that for a fixed ε > 0, that we will find some iterate xk whose gradient is
sufficiently small, we simply need to upper bound our convergence rate by ε and solve. That is, we
consider

min
0≤k≤N

∥∇f(xk)∥ ≤
√

2L(f(x0)− f⋆)
N + 1 < ε ,

and conclude that for

N ≥ 2L(f(x0)− f⋆)
ε2 =⇒ min

0≤k≤N
∥∇f(xk)∥ < ε .

Exercise 3

Let A, C be n× n matrices and b, d ∈ Rn. Consider

f(x) = ∥Ax− b∥2 + ∥Cx− d∥2 .

Explain how you would find a vector x̄ such that ∥∇f(x̄)∥ < 0.001 (hint: find a value L such
that

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, ∀x, y ∈ Rn

and an upper bound on f(x0)− f⋆, for any chosen x0).

It may be useful to know the definition of norm of a matrix:

∥A∥ := sup
x ̸=0

∥Ax∥
∥x∥

,

and subsequently for all x ∈ Rn,
∥Ax∥ ≤ ∥A∥∥x∥ .

23

Note that in general, our goal is relatively tame: we only want to approach a local minimum.
Still, even this goal can be unreachable to gradient descent. If a function has a saddle point, that is
∇f(x) = 0 yet x is neither a local minimum or maximum, we very well may approach that point,
and then stay there for any future iterate (why?). In order to achieve stronger goals, with perhaps
faster rates of convergence, we need stronger assumptions on the function we aim to minimize.

2.2 Smooth and Convex Functions

In this section, we still consider the general optimization problem

min
x∈Rn

f(x) (2.7)

where the objective function is L-smooth (and hence differentiable). Recall that previously, we had
aimed to solve this problem under fairly weak assumptions on f(·). Adopting the same assumptions
as Nesterov [1, Assumption 2.1.1-2.1.3], we aim to construct a class of differentiable functions of
differentiable functions F we wish to work with. From the conclusion of the last section, we note
that the optimality conditions was simply not strong enough to guarantee a global minimum. In
fact, a zero gradient wasn’t even strong enough to ensure a local one! Let’s first address this issue.

Assumption 1 – F has nicer optimality conditions

For any f ∈ F , the first-order optimality condition is sufficient to ensure a global minimizer.
That is,

∇f(x̄) = 0 =⇒ f(x̄) ≤ f(y), ∀y ∈ Rn .

The next property we would like to see is some level of invariance for elements in our function
class. That is, we would wish to be able to construct new functions from others in “simple” ways.
Similar to the structure of vector spaces, we introduce only simple invariant operations for our
function class.

Assumption 2 – F is a cone (like a vector space, but nonnegative scaling)

If f1, f2 ∈ F , and α, β ≥ 0, then
αf1 + βf2 ∈ F .

Note we only consider nonnegative scaling α and β, as we would like x2 to be in our class and
not −x2. Essentially, negatives turn minimizers into maximizers, so we arbitrarily pick the former
and restrict ourselves accordingly.

Finally, let’s add some basic functions to our class.

Assumption 3 – F contains affine (shifted linear) functions

For any α ∈ R and s ∈ Rn,
f(x) := α + ⟨s, x⟩ ∈ F .

Note that for linear functions ∇f(x) = 0 if and only if f was constant, meaning that any x is a
global minimizer.

These three assumptions turn out to be exactly what we need to introduce our function class.
Let f ∈ F and consider the perturbed function (which is in F by Assumptions 2 and 3) for a fixed

24

x0 ∈ Rn,
ϕ(y) = f(y)−

〈
∇f(x0), y

〉
.

Note that
∇ϕ(y)

∣∣∣∣
y=x0

= ∇f(x0)−∇f(x0) = 0 ,

so by Assumption 1, x0 must be a global minimizer of ϕ(·). Therefore, for any y,

f(y)−
〈
∇f(x0), y

〉
= ϕ(y) ≥ ϕ(x0) = f(x0)−

〈
∇f(x0), x0

〉
,

recovering the condition
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , ∀x, y ∈ Rn (2.8)

since x0 was arbitrary. We note this result has the precise result of convex functions demonstrated
by Proposition 1.1.21. In fact, these functions are precisely the convex ones described earlier.

2.2.1 F is the set of convex functions. We already showed that these assumptions imply a
lower linearization, so now we demonstrate the other direction. We will need a couple auxiliary
lemmas to begin, showing the above condition is sufficient to satisfy all through assumptions.
Therefore, functions that possess lower linearizations coincide with ones in F .

Lemma 2.2.1 – Assumption 1 is satisfied

Suppose differentiable f : Rn → R satisfies (2.8) and ∇f(x⋆) = 0, then x⋆ is a global
minimizer of f(·) on Rn.

Proof. For any y ∈ Rn,
f(y) ≥ f(x⋆) + ⟨∇f(x⋆), y − x⋆⟩ = f(x⋆) .

Lemma 2.2.2 – Assumption 2 is satisfied

Suppose differentiable f1, f2 : Rn → R satisfies (2.8) and α, β ≥ 0. Then αf1 + βf2 also
satisfies (2.8).

Proof. For any x, y ∈ Rn, we have
f1(y) ≥ f1(x) + ⟨∇f1(x), y − x⟩ .

f2(y) ≥ f2(x) + ⟨∇f2(x), y − x⟩ .

Multiplying the first line by α and the second by β and adding the two inequalities shows the desired
result.

Lemma 2.2.3 – Assumption 3 is satisfied

For any f satisfying (2.8), linear map A : Rn → Rm, and vector b ∈ Rm, then the map

ϕ(x) = f(Ax + b)

also satisfies (2.8).

25

Proof. Let x, y ∈ Rn, x̄ = Ax + b, and ȳ = Ay + b. Note that from the chain rule,

∇ϕ(x) = AT∇f(Ax + b) ,

so we have

ϕ(y) = f(ȳ) ≥ f(x̄) + ⟨∇f(x̄), ȳ − x̄⟩
= ϕ(x) + ⟨∇f(x̄), Ay −Ax⟩

= ϕ(x) +
〈
AT∇f(x̄), y − x

〉
= ϕ(x) + ⟨∇ϕ(x), y − x⟩ ,

where the first inequality comes from f satisfying (2.8), and the result follow from the definitions of
x̄, ȳ and AT (one definition is that ⟨x, Ay⟩ = ⟨AT x, y⟩ for all x and y).

With the first characterization that

F = {f : f satisfies (2.8)}

out of the way, we can prove our characterization that this class of functions we want to analyze is
precisely the set of convex functions.

Theorem 2.2 – F is the set of differentiable convex functions

A function f belongs to F if and only if for any x, y ∈ Rn and t ∈ [0, 1]

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) . (2.9)

Proof. Given x, y ∈ Rn and any t ∈ [0, 1], define xt = tx + (1− t)y. Let f ∈ F , then

f(xt) ≤ f(y)− ⟨∇f(xt), y − xt⟩ = f(y)− t ⟨∇f(xt), y − x⟩
f(xt) ≤ f(x)− ⟨∇f(xt), x− xt⟩ = f(x) + (1− t) ⟨∇f(xt), y − x⟩ .

Multiplying the first equation by (1− t) and the second by t and adding results, we cancel the inner
product terms and get the result

f(xt) = f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) .

On the other hand, if (2.9) holds for all x, y ∈ Rn and α ∈ [0, 1], then for any α ∈ [0, 1) we can
rearrange the expression to yield

f(y) ≥ 1
1− t

[f(tx + (1− t)y)− tf(x)] = f(x) + 1
1− t

[f(tx + (1− t)y)− f(x)]

= f(x) + f(x + (1− t)(y − x))− f(x)
1− t

.

This holds for all t, and letting t → 1, we recover the directional derivative, which from Corol-
lary 1.1.15 shows that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ ,

and consequently f ∈ F .

There are several other equivalent characterizations of convex functions, which we will now
discuss.

26

2.2.2 Equivalent Characterizations for Convex and Smooth Functions In order to
analyze the convergence guarantees for gradient descent in the smooth and convex setting, it will be
especially useful to utilize the following equivalent characterizations. All the proofs for the rates in
which gradient descent converge have the same flavor:

1. Consider the gradient step xk+1 = xk − hk∇f(xk).

2. Utilize one of the properties of smooth and convex functions.

3. Substitute, rearrange, bound.

Different results may utilize different characterizations, in that some will tell us how function values
are behaved, others may indicate growth on the difference between gradients.. Regardless, the
following characterizations will prove extremely useful in analyzing our algorithm.

We begin by considering equivalences for convex functions.

Theorem 2.3 – Equivalent Characterizations of Convex Functions

For differentiable f : Rn → R, any x, y ∈ Rn and parameter t ∈ [0, 1], the following are
equivalent:

i) f is convex, denoted f ∈ F (Rn)

ii) (Jensen’s inequality) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

iii) (First-order lower bound) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩

iv) (Monotonicity of the gradient) ⟨f(x)− f(y), x− y⟩ ≥ 0

Proof. We have already demonstrated i)⇐⇒ ii)⇐⇒ iii). It suffices to conclude iii)⇐⇒ iv). From
the first-order lower bound, we have for any x, y ∈ Rn

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , f(x) ≥ f(y) + ⟨∇f(y), y − x⟩ .

Adding the two inequalities together yields iv).
Now suppose iv) holds. Define xt = x + t(y − x) for t ∈ [0, 1].

f(y) = f(x) +
∫ 1

0

〈
∇f(x + t(y − x)︸ ︷︷ ︸

xt

), y − x

〉
dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0
⟨∇f(xt)−∇f(x), y − x⟩ dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1
t
⟨∇f(xt)−∇f(x), x + t(y − x)− x⟩ dt

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1
t
⟨∇f(xt)−∇f(x), xt − x⟩ dt︸ ︷︷ ︸

≥0

≥ f(x) + ⟨f(x), y − x⟩ ,

where the first equation holds by the fundamental theorem of calculus (why?), the second equality
adds and subtracts the linear term ⟨∇f(x), y = x⟩, and finally we simplify and utilize the monotonicty
of the gradient.

27

We discussed extensively properties ii) and iii), but iv) also shares some insight on convex
functions. This characterization roughly states that the gradients are increasing. That is, if y > x
then ∇f(y) > ∇f(x). This can work in higher-dimensions too by considering only increasing one
component and keeping the rest static.

Now we move onto smooth functions. There are several more properties of smooth functions,
but below are the ones we will find particularly useful.

Theorem 2.4 – Equivalent Characterizations of Smooth and Convex Functions

For differentiable f : Rn → R and any x, y ∈ Rn, the following are equivalent:

i) f is L-smooth and convex over Rn, denoted f ∈ FL(Rn)

ii) (Lipschitz continuous gradient) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥

iii) (Quadratic upper bound) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥2

iv) (Upper bounded monotonicity) ⟨∇f(x)−∇f(y), x− y⟩ ≤ L∥x− y∥2

v) (Cocoercivity) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥2

vi) (Lower bounded monotonicity) ⟨∇f(x)−∇f(y), x− y⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2

Proof. As i)⇐⇒ ii) by definition, we can prove the result by showing

ii) =⇒ iii) =⇒ iv) =⇒ v) =⇒ vi) =⇒ ii) .

• ii) =⇒ iii): Fundamental theorem of calculus.

• iii) =⇒ iv): Swap the roles of x and y and add the inequalities.

• iv) =⇒ v): Fix x ∈ Rn and define ϕx(y) := f(y)− ⟨∇f(x), y⟩ (this should look familiar). We
have already seen this function is convex with a minimizer at y⋆ = x. Furthermore,

⟨∇ϕx(y1)−∇ϕx(y2), y1 − y2⟩ = ⟨(∇f(y1)−∇f(x))− (∇f(y2)−∇f(x)), y1 − y2⟩
= ⟨∇f(y1)−∇f(y2), y1 − y2⟩
≤ L∥y1 − y2∥ .

Therefore, ϕx satisfies iv). Again using fundamental theorem of calculus (see exercise below
to fix this missing details), we can obtain iii) from iv). Consequently, it also holds that

ϕx(y2) ≤ ϕx(y1) + ⟨∇ϕx(y1), y2 − y1⟩+ L

2 ∥y2 − y1∥2 .

Simply renaming, we have that for any y ∈ Rn, consider

ϕx(z) ≤ ϕx(y) + ⟨∇ϕx(y), z − y⟩+ L

2 ∥z − y∥2

and minimizing over z. We know that left hand side is minimized at z⋆ = x, so we just need
to minimize the right hand side. That is

f(x)− ⟨∇f(x), x⟩ = ϕx(x) ≤ ϕx(z) ≤ ϕx(y) + ⟨∇ϕx(y), z − y⟩+ L

2 ∥z − y∥2 . (2.10)

28

Recall, to minimize a (convex) function, it suffices to sets its gradient equal to zero, so consider
the equation on the right hand side

Qx,y(z) = ϕx(y) + ⟨∇ϕx(y), z − y⟩+ L

2 ∥z − y∥2

where we again recall x and y are fixed. Thus,

∇Qx,y(z⋆) = ∇ϕx(y) + L(z⋆ − y) = 0 .

To find z⋆, we substitute ∇ϕx(y) = ∇f(y)−∇f(x) and solve

∇f(y)−∇f(x) + L(z⋆ − y) = 0

=⇒z⋆ = y − ∇f(y)−∇f(x)
L

Substituting this value in (2.10) yields the desired bound

ϕx(x) ≤ Qx,y(z⋆) = ϕx(y) + ⟨∇ϕx(y), z⋆ − y⟩+ L

2 ∥z
⋆ − y∥2

= ϕx(y) +
〈
∇ϕx(y),

(
y − ∇f(y)−∇f(x)

L

)
− y

〉
+ L

2

∥∥∥∥(y − ∇f(y)−∇f(x)
L

)
− y

∥∥∥∥2

= ϕx(y) +
〈
∇ϕx(y), ∇f(y)−∇f(x)

L

〉
+ L

2

∥∥∥∥∇f(y)−∇f(x)
L

∥∥∥∥2

Recall ϕx(y) = f(y)− ⟨∇f(x), y⟩ and ∇ϕx(y) = ∇f(y)−∇f(x), so

f(x)− ⟨∇f(x), x⟩ ≤ f(y)− ⟨∇f(x), y⟩+ 1
L
∥∇f(y)−∇f(x)∥2 + 1

2L
∥∇f(y)−∇f(x)∥2 .

Rearranging yields

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1
2L
∥∇f(y)−∇f(x)∥2 .

• v) =⇒ vi): Swap the roles of x and y and add the inequalities.

• vi) =⇒ ii): Considering the bound in iv) and Cauchy Schwarz inequality,

1
L
∥∇f(x)−∇f(y)∥ ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ ∥x− y∥∥∇f(x)−∇f(y)∥ .

Multiplying both sides by L and dividing by ∥∇f(x)−∇f(y)∥ yields

∥∇f(y)−∇f(y)∥ ≤ L∥x− y∥ .

The missing part of the proof above uses the fact that iv) =⇒ iii) as well. The following exercise
completes the proof.

29

Exercise 4

Suppose for f : Rn → R

⟨∇f(x)−∇f(y), x− y⟩ ≤ L∥x− y∥2, ∀x, y ∈ Rn .

Show that
f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2 ∀x, y ∈ Rn

(hint: use fundamental theorem of calculus similar to the proof of Theorem 2.3, except this
time upper bound the inner product).

To summarize, the first two characterizations are how we defined L-smooth. The third and
fourth handle upper bounding the function, either with a quadratic upper bound on the function
itself or bounding the amount the gradients can change direction. The fifth and sixth bound handle
the converse, bounding the function below (not by a quadratic in x, but by relating to the change in
gradients) and the change in direction of the gradient. Combining the results, we get two two-way
bounds (not symmetric, yet) stating

f(x) + ⟨∇f(x), y − x⟩+ 1
2L
∥∇f(x)−∇f(y)∥2 ≤ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2

as well as
1
L
∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ L∥x− y∥2 .

We can then see, both of these results conclude

∥∇f(x)−∇f(y)∥2 ≤ L2∥y − x∥2 =⇒ ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ ,

which is precisely the definition of L-smoothness. Note that L-smooth functions are rather restrictive,
but this will be useful for ensuring that gradient descent works well.

2.2.3 Equivalent Characterizations of Strongly Convex Functions We now explore a
dual characteristic of L-smoothness. Here, we use the word dual for multiple reasons, some more
complex and rich in theory than others. At the very least, we will see that the characterizations
“mimic” those of L-smooth functions quite visually. That is, when a function is smooth and strongly
convex, we will now see two-sided symmetric bounds.

The proof of the following theorem is very similar to the previous, so we leave it without proof.
However, note that some techniques need to be reversed. That is, we need to be careful (as always)
with which way bounds go. That is, with Cauchy Schwarz for example, the inner products is
bounded above by the product of the norms.

30

Theorem 2.5 – Equivalent Characterizations of Strongly Convex Functions

For differentiable f : Rn → R and any x, y ∈ Rn, the following are equivalent

i) f is µ-strongly convex

ii) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥2

iii) ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2

Furthermore, if f is µ-strongly convex, then the following hold

a) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ 1
2µ∥∇f(x)−∇f(y)∥2

b) ⟨∇f(x)−∇f(y), x− y⟩ ≤ 1
µ∥∇f(x)−∇f(y)∥2

c) ∥∇f(x)−∇f(y)∥ ≥ µ∥y − x∥

We note that for a µ-strongly convex function, similar two sides bound hold, but now the roles
are reverse. Still, these bound aren’t quite symmetric. That is, considering the monotonicity of the
gradient

µ∥x− y∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩ ≤ 1
µ
∥∇f(x)−∇f(y)∥2 ,

where on the left hand side, we consider the squared distance of the points x and y, while the right
hand side considers the squared distance of their gradients. Regardless, strongly convex functions
are very useful. In particular, the always admit a unique global minimizer!

Exercise 5

Suppose differentiable f : Rn → R is µ-strongly convex. Suppose a minimizer exists, show
that it is unique.

It will turn out that the class of functions we really would benefit from are those possessing
both qualities. In this case, we get symmetric bounds

f(x) + ⟨∇f(x), y − x⟩+ µ

2 ∥y − x∥2 ≤ f(y) ≤ f(x) + ⟨f(x), y − x⟩+ L

2 ∥y − x∥2 . (2.11)

We will see soon how to leverage this fact.

2.2.4 Properties of Smooth and Strongly Convex Functions The below exercises demon-
strate the many properties of smooth and strong convex functions. When f is convex and both
L-smooth and µ-strongly convex, we denoted f ∈ FL,µ(Rn).

Exercise 6

Suppose f1 is L1-smooth and f2 is L2-smooth. Is f1 + f2 smooth? If so, what is the value of
the Lipschitz constant?

31

Exercise 7

Suppose f1 is µ-strongly convex and f2 is L2-strongly convex. Is f1 + f2 strongly convex? If
so, what is the value of the modulus (i.e. f1 has modulus µ1)?

Exercise 8

Suppose f is L-smooth and µ-strongly convex. Show that µ ≤ L.

Exercise 9

What class of functions attain equality. That is, what functions are L-smooth and µ-strongly
convex with L = µ?

Exercise 10

Suppose f is L-smooth and µ-strongly convex. Show that ϕ(x) = f(x) − µ
2∥x∥

2 is convex
and (L− µ)-smooth.

Exercise 11

Suppose f is L-smooth and µ-strongly convex. Show that the bound for the monotonicity for
the gradient can be tightened

⟨∇f(x)−∇f(y), x− y⟩ ≥ µL

µ + L
∥x− y∥2 + 1

µ + L
∥∇f(x)−∇f(y)∥2 .

It will be useful to consider the function ϕ(x) = f(x)− µ
2∥x∥

2 and the previous exercise.

2.3 Proofs for Gradient Descent Convergence Guarantees

We finally now have the tools to present the performance of gradient descent applied to the problem

min
x∈Rn

f(x)

with f ∈ FL(Rn), the set of convex and L-smooth functions. Recall the method below.

Algorithm – Gradient Descent

Input: x0 ∈ Rn, target accuracy ε > 0 and stepsizes hk

For k = 0, 1, 2, . . .

1. xk+1 ← xk − hk∇f(xk)

In this section, we only consider the constant step size hk = h > 0, but it is possible to show
that different schemes exhibit similar rates of convergence. Denote x⋆ as an optimal point, with
f⋆ = f(x⋆).

32

Theorem 2.6 – Convergence Guarantees for Smooth and Convex Functions

Let f ∈ FL(Rn) and 0 < h < 2
L . Then the iterations of gradient descent {xk}, with

corresponding function values satisfy

f(xk)− f⋆ ≤ 2(f(x0)− f⋆)∥x0 − x⋆∥2

2L∥x0 − x⋆∥2 + kh(2− Lh)(f(x0)− f(x⋆)) , ∀k ≥ 0.

The proof of this will be the most technical one we’ve seen so far, combining many characteristics
of convex and smooth functions. The following is aimed to be as digestible as possible, but it still
may take a few read-throughs to fully understand. Regardless, the above theorem states that the
suboptimality gap decreases at a sublinear rate of order O(1/k). That is, in the long run, the
distance to optimal looks at most, inversely proportional to the number of steps taken. This turns
out to be far from optimal, in which a modified version of gradient descent can achieve a rate of
O(1/k2), implying that the distance to optimal is proportional to the squared number of iterates.

Proof. Let rk = ∥xk − x⋆∥. Then

r2
k+1 = ∥xk+1 − x⋆∥2

= ∥xk − h∇f(xk)− x⋆∥2

= ∥xk − x⋆∥2 − 2h
〈
∇f(xk), xk − x⋆

〉
+ h2∥∇f(xk)∥2

= ∥xk − x⋆∥2 − 2h
〈
∇f(xk)−∇f(x⋆), xk − x⋆

〉
+ h2∥∇f(xk)∥2

≤ ∥xk − x⋆∥2 − 2h

L
∥∇f(xk)−∇f(x⋆)∥2 + h2∥∇f(xk)∥2

= r2
k − h

(2
L
− h

)
∥∇f(xk)∥2

where we use the gradient step in the first equality, we “FOIL” in the next equality, we add∇f(x⋆) = 0
in the next equality, we apply the “lower bounded monotonicity” from vi) in Theorem 2.4, and we
conclude by simplfying the algebra and again noting that ∇f(x⋆) = 0. Notably r0 ≥ r1 ≥ ... ≥ rk

for all k ≥ 0.
Considering Lemma 1.1.23, we recall the “upper bounding quadratic” nature of smooth functions

to note that

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+ L

2 ∥x
k+1 − xk∥2

= f(xk)− ω∥∇f(xk)∥2 ,

where ω = h
(
1− L

2 h
)
. Then by convexity and Cauchy-Schwarz,

f(xk)− f⋆︸ ︷︷ ︸
∆k

≤
〈
∇f(xk), xk − x⋆

〉
≤ ∥∇f(xk)∥∥xk − x⋆∥ ≤ r0∥∇f(xk)∥ ,

where we recall r0 ≥ rk = ∥xk − x⋆∥. Considering the above inequalities (subtracting f⋆ on both
sides, we conclude

f(xk+1)− f⋆︸ ︷︷ ︸
∆k+1

≤ f(xk)− f⋆︸ ︷︷ ︸
∆k

−ω∥∇f(xk)∥2 ≤ ∆k −
ω

r2
0

∆2
k .

33

Rearranging (and dividing by 1
∆k∆k+1

) yields the recurrence

1
∆k+1

≥ 1
∆k
− ω

r2
0
· ∆k

∆k+1
≥ 1

∆k
+ ω

r2
0

,

where the last inequality uses the fact that ∆k is non-increasing (from the descent lemma). Summing
up all the inequalities, we again get a string of telescoping cancellations, and conclude that

1
∆k+1

≥ 1
∆0

+ ω

r2
0

(k + 1) .

Considering ∆k+1 = f(xk+1)− f⋆, ∆0 = f(x0)− f⋆, r0 = ∥x0 − x⋆∥, and ω = h
(
1− L

2 h
)
, all we

need to do is rearrange the expression to conclude

f(xk)− f⋆ ≤ 2(f(x0)− f⋆)∥x0 − x⋆∥2

2L∥x0 − x⋆∥2 + kh(2− Lh)(f(x0)− f(x⋆)) ,

where we are looking at iterate k for simplicity.

Recall that we can maximize the amount of decrease each gradient step by setting

h = 1
L

,

and we can further note that
f(x0)− f∗ ≤ L

2 ∥x
0 − x⋆∥2

by the descent lemma (again) and noting that ∇f(x⋆) = 0 (again). Therefore, we can greatly simplify
the expression above. Simply plugging in h = 1

L and bounding ∥x0 − x⋆∥2 ≥ 2
L(f(x0)− f(x⋆)) in

the convergence guarantee, we prove the following corollary.

Corollary 2.3.1

If hk = h = 1
L and f ∈ FL(Rn), then

f(xk)− f⋆ ≤ 2L∥x0 − x⋆∥2

k + 4 ≤ 2L∥x0 − x⋆∥2

k

We can now turn our attention to that of smooth and strongly convex functions. Recall that a
consequence of f : Rn → R being L-smooth and µ-strongly convex is the two sided bound

f(x) + ⟨∇f(x), y − x⟩+ µ

2 ∥y − x∥2 ≤ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2.

We can then leverage these bounds against each other. Notably, it can be shown that every 2L
µ

iterations of gradient descent with halve the function gap.

Exercise 12

Suppose f ∈ FL,µ(Rn) (i.e., f is L-smooth and µ-strongly convex). Suppose f(x0)− f⋆ ≤ R.
Show that after k = 8L

µ iterations f(xk)− f⋆ ≤ R
2 . Conclude that

f(xN)− f⋆ ≤ ε

for any N ≥ 8L
µ log2

(
R
ε

)
(hint. use Corollary 2.3.1 and bound ∥x0 − x⋆∥ with respect to R).

34

For a more explicit (and classical) convergence guarantee that doesn’t require an inductive
arguement we move to the following theorem.

Theorem 2.7

Let f ∈ FL,µ(Rn) and 0 < h ≤ 2
µ+L . The the iterations of gradient descent {xk}, with

corresponding function values satisfy

∥xk − x⋆∥2 ≤
(

1− 2hµL

µ + L

)k

∥x0 − x⋆∥2 .

If h = 2
µ+L then the following hold for all k ≥ 0

∥xk − x⋆∥2 ≤
(

L− µ

L + µ

)2k

∥x0 − x⋆∥2

f(xk)− f⋆ ≤ L

2

(
L− µ

L + µ

)2k

∥x0 − x⋆∥2

f(xk)− f⋆ ≤ L

µ

(
L− µ

L + µ

)2k

(f(x0)− f⋆)

Proof. Let rk = ∥xk − x⋆∥. Then

r2
k+1 = ∥xk − h∇f(xk)− x⋆∥2

= r2
k − 2h

〈
∇f(xk), xk − x⋆

〉
+ h2∥∇f(xk)∥2

= r2
k − 2h

〈
∇f(xk)−∇f(x⋆), xk − x⋆

〉
+ h2∥∇f(xk)∥2

≤ r2
k − 2h

[
µL

µ + L
∥xk − x⋆∥2 + 1

µ + L
∥∇f(xk)−∇f(x⋆)∥2

]
+ h2∥∇f(xk)∥2

=
(

1− 2hµL

µ + L

)
r2

k − h

(2
µ + L

− h

)
∥∇f(xk)∥2 ,

where we utilize similar technique to the prove of the smooth convergence guarantee, while also
utilizing the strengthened result from Exercise 11. We note that h ≤ 2

µ+L to achieve our first result,
and the rest follow immediately from ∇f(x⋆) = 0 and the upper and lower quadratic bounds.

Remark

Often the ratio between the smoothness and strong convexity parameters is useful to consider.
As shown early, if a function is L-smooth and µ-strongly convex, then L ≥ µ, so Qf := L/µ ≥ 1.
We can reformulate our convergence guarantees with this value instead

∥xk − x⋆∥2 ≤
(

Qf − 1
Qf + 1

)2k

∥x0 − x⋆∥2

f(xk)− f⋆ ≤ L

2

(
Qf − 1
Qf + 1

)2k

∥x0 − x⋆∥2

f(xk)− f⋆ ≤ Qf

(
Qf − 1
Qf + 1

)2k

(f(x0)− f⋆)

35

References

[1] Yurii Nesterov. Lectures on Convex Optimization. Springer Cham, Switzerland, 2 edition, 2018.

36

	Background
	Preliminary Concepts
	Linear Algebra Review
	Calculus Review
	(Structured) Classes of Functions

	Why Gradient Descent

	Convergence Guarantees for Gradient Descent
	Smooth Functions
	Optimizing hk for the three different methods.

	Smooth and Convex Functions
	F is the set of convex functions.
	Equivalent Characterizations for Convex and Smooth Functions
	Equivalent Characterizations of Strongly Convex Functions
	Properties of Smooth and Strongly Convex Functions

	Proofs for Gradient Descent Convergence Guarantees

