A Universally Optimal Method for Minimizing Heterogeneously Smooth and Convex Compositions

Aaron Zoll

Department of Applied Math and Statistics Johns Hopkins University

March 10th 2025

Setup •0000

Compositions and Heterogeneity

Setup 00000

Setup 00000

Setup ○●○○○

Setup ○●○○○

Setup ○●○○○

Consider the following ML problem of support vector machines

$$\begin{cases} \min_{w,b,\xi} & ||w||_2^2 + C \sum_{i=1}^n \xi_i \\ s.t. & y_i(w^T x_i - b) \ge 1 - \xi_i \\ & \xi_i \ge 0 \end{cases}$$

$$\min_{w,b} \|w\|_2^2 + C \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i - b)\}$$

Consider the following ML problem of support vector machines

$$\begin{cases} \min_{w,b,\xi} & \|w\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i} \\ s.t. & y_{i}(w^{T}x_{i} - b) \geq 1 - \xi_{i} \\ & \xi_{i} \geq 0 \end{cases}$$

$$\min_{w,b} ||w||_2^2 + C \sum_{i=1}^n \max\{0, 1 - y_i(w^T x_i - b)\}$$

We may have some adversarial type problem

$$\min_{x \in \mathcal{X}} \max_{p \in \{1, \frac{4}{3}, \frac{3}{2}, 2\}} \left\{ \|Ax - b\|_{p}^{p} \right\}$$

Perhaps we're analyzing a mixture model or log-likelihood

$$\min_{x \in \mathcal{X}} \log \left(\sum_{j=1}^{m} \exp(g_j(x)) \right)$$

$$g_1(x) = x^2
 g_2(x) = |2x - 1|$$

Note: Structured components ⇒ structured objective!

Perhaps we're analyzing a mixture model or log-likelihood

$$\min_{x \in \mathcal{X}} \log \left(\sum_{j=1}^{m} \exp(g_j(x)) \right)$$

$$g_1(x) = x^2$$

 $g_2(x) = |2x - 1|$

Note: Structured components structured objective! Smoothness and Convexity (Generalized)

Two Dual Notions

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

"L-smoothness"

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

"L-smoothness"

 $\hbox{$^{\prime\prime}\mu$-strong convexity}\hbox{$^{\prime\prime}$}$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

Two Dual Notions

$$\left| f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \right|$$

"L-smoothness"

" μ -strong convexity"

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2$$

Smooth and Strong Convexity

Figure: [2] Smoothness and Strong Convexity Visualized

Smooth and Strong Convexity Rates

In the nonsmooth case, we assume f is Lipschitz with rank $M_0 \mapsto A_0 \mapsto A_0$

Generalizing Smoothness

Generalizing Smoothness

(L, p)-Hölder Smoothness

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|^p$$

(L,p)-Hölder continuous gradient

$$(p+1)$$
-degree upper bound

$$||f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{1+p} ||y - x||^{1+p}$$

(L, p)-Hölder Smoothness

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|^p$$

(L,p)-Hölder continuous gradient

(p+1)-degree upper bound

$$||f(y)| \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{1+\rho} ||y - x||^{1+\rho}$$

(μ, q) -Uniform Convexity

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{1+q} ||y - x||^{1+q}$$

(μ, q) -Uniform Convexity

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{1+q} ||y - x||^{1+q}$$

Visual Interlude

Figure: 2-dim plot and 3-dim plot

Universal Guarantees?

Recall, we minimize $F(x) = h(g_1(x), ..., g_m(x))$. Each component having its own (L_j, p_j) -Hölder smoothness and (μ_j, q_j) -uniform convexity.

Suppose we're given mag \tilde{L} and $\tilde{\mu}$ that captures all the information for upper/lower curvature...

What guarantees should we hope for?

Universal Guarantees?

Recall, we minimize $F(x) = h(g_1(x), ..., g_m(x))$. Each component having its own (L_j, p_j) -Hölder smoothness and (μ_j, q_j) -uniform convexity.

Suppose we're given magic \tilde{L} and $\tilde{\mu}$ that captures all the information for upper/lower curvature...

What guarantees should we hope for

Universal Guarantees?

Recall, we minimize $F(x) = h(g_1(x), ..., g_m(x))$. Each component having its own (L_j, p_j) -Hölder smoothness and (μ_j, q_j) -uniform convexity.

Suppose we're given magic L and $\tilde{\mu}$ that captures all the information for upper/lower curvature. What guarantees should we hope for?

Aggregated Smooth and Strong Convexity Rates?

Motivating our Lovely Constants

From Constraints to Compositions

From Constraints to Compositions

From Constraints to Compositions

De "composing"

$$p_{\star} = \begin{cases} \min_{x \in \mathcal{X}} & g_0(x) \\ \text{s.t.} & g_j(x) \le 0 \end{cases}$$

$$p_{\star} = \min_{x \in \mathcal{X}} \max_{\lambda_j \ge 0} g_0(x) + \sum_{i=1}^m \lambda_j g_i(x)$$

De "composing"

$$p_{\star} = \begin{cases} \min_{x \in \mathcal{X}} & g_0(x) \\ \text{s.t.} & g_j(x) \le 0 \end{cases}$$

$$p_{\star} = \min_{x \in \mathcal{X}} \max_{\lambda_j \ge 0} g_0(x) + \sum_{j=1}^{m} \lambda_j g_j(x)$$

Tool 1: Fenchel Conjugates

$$f^*(\lambda) = \sup_{x \in \mathbb{R}^n} \langle \lambda, x \rangle - f(x)$$

$$f^{**} = f$$

$$f(x) = \sup_{\lambda \in \mathbb{R}^n} \langle x, \lambda \rangle - f^*(\lambda)$$

Tool 1: Fenchel Conjugates

$$f^*(\lambda) = \sup_{x \in \mathbb{R}^n} \langle \lambda, x \rangle - f(x)$$

$$f^{**} = f$$

$$f(x) = \sup_{\lambda \in \mathbb{R}^n} \langle x, \lambda \rangle - f^*(\lambda)$$

Tool 1: Fenchel Conjugates

$$h^*(\lambda) = \sup_{x \in \mathbb{R}^n} \langle \lambda, x \rangle - h(x)$$

$$h(g(x)) = \sup_{\lambda \in \mathbb{R}^n} \langle \lambda, g(x) \rangle - h^*(\lambda)$$

Lagrangian Reformulation (via conjugates)

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) + \underbrace{\iota_{z \leq 0}(g_1(x), ..., g_m(x))}$$

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) + \underbrace{\max_{x \in \mathcal{X}} \sum_{j=1}^{m} \lambda_j g_j(x) - \iota_{z \leq 0}^*(\lambda)}$$

Lagrangian Reformulation (via conjugates)

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) +$$

$$\iota_{z \leq 0}(g_1(x), ..., g_m(x))$$

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) +$$

$$\max_{\lambda \in \mathbb{R}^m} \sum_{j=1}^m \lambda_j g_j(x) - \iota_{z \leq 0}^*(\lambda)$$

Lagrangian Reformulation (via conjugates)

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) +$$

$$\iota_{z \leq 0}(g_1(x), ..., g_m(x))$$

$$p_{\star} = \min_{x \in \mathcal{X}} \max_{\lambda_j \geq 0} g_0(x) + \sum_{j=1}^{m} \lambda_j g_j(x)$$

De "composing" (again, generally)

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) + h(g_1(x), ..., g_m(x))$$

$$h(g(x)) = \max_{\lambda \in \mathbb{R}^m} \sum_{j=1}^m \lambda_j g_j(x) - h^*(\lambda)$$

$$p_* = \min_{x \in \mathcal{X}} \max_{\lambda \ge 0} g_0(x) + \sum_{j=1}^m \lambda_j g_j(x) - h^*(\lambda)$$

De "composing" (again, generally)

$$p_{\star} = \min_{x \in \mathcal{X}} g_0(x) + h(g_1(x), ..., g_m(x))$$

$$h(g(x)) = \max_{\lambda \in \mathbb{R}^m} \sum_{j=1}^m \lambda_j g_j(x) - h^*(\lambda)$$

$$p_{\star} = \min_{x \in \mathcal{X}} \max_{\lambda \geq 0} g_0(x) + \sum_{j=1}^{m} \lambda_j g_j(x) - h^{*}(\lambda)$$

Sums are Wonderful

$$\min_{x \in \mathcal{X}} \mathcal{L}(x, \lambda^*) := g_0(x) + \sum_{i=1}^m \lambda_j^* g_j(x)$$

each g_j is L_j -smooth

$$\sum_{i=0}^{m} \lambda_{j}^{*} g_{j}(x) \text{ is } \sum_{i=0}^{m} \lambda_{j}^{*} L_{j}\text{-smooth}$$

Sums are Wonderful

$$\min_{\mathbf{x} \in \mathcal{X}} \mathcal{L}(\mathbf{x}, \lambda^*) := g_0(\mathbf{x}) + \sum_{i=1}^m \lambda_j^* g_j(\mathbf{x})$$

each g_j is L_j -smooth

$$\sum_{i=0}^{m} \frac{\lambda_{j}^{*} g_{j}(x)}{\sum_{i=0}^{m} \lambda_{j}^{*} L_{j}\text{-smooth}}$$

Inaccessible $\lambda^*!$

$$\min_{x \in \mathcal{X}} \mathcal{L}(x, \lambda) := g_0(x) + \sum_{i=1}^m \lambda_i g_i(x)$$

restrict
$$\lambda \in \Lambda_r := B(\lambda^*, r)$$

$$\sum_{i=0}^{m} \frac{\lambda_{j} g_{j}(x)}{\lambda_{j}^{*} g_{j}(x)} \text{ is } \sum_{i=0}^{m} (\lambda_{j}^{*} + r) L_{j} \text{-smooth}$$

Inaccessible λ^* !

$$\min_{x \in \mathcal{X}} \mathcal{L}(x, \lambda) := g_0(x) + \sum_{i=1}^m \lambda_j g_i(x)$$

restrict $\lambda \in \Lambda_r := B(\lambda^*, r)$

$$\sum_{i=0}^{m} \frac{\lambda_{j}}{\lambda_{j}} g_{j}(x) \text{ is } \sum_{i=0}^{m} (\lambda_{j}^{\star} + r) L_{j}\text{-smooth}$$

Defining Our Constants

Approximate Dualized Aggregate Smoothness Constant I

Tool 2: Nesterov-Style Quadratic Upper Bounds

Lemma (Lemma 1, Nesterov [1])

Fix
$$\delta > 0$$
 and (L, p) -Hölder smooth, with $L_{\delta} \geq \left[\frac{1-p}{1+p}\frac{1}{\delta}\right]^{\frac{1-p}{1+p}}L^{\frac{2}{1+p}}$,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L_{\delta}}{2} \|y - x\|^2 + \frac{\delta}{2}, \ \forall x, y \in dom \ f \ .$$

$$\tag{1}$$

Approximate Dualized Aggregate Smoothness Constant II

Approximate Dualized Aggregate Smoothness Constant II

Guarantees that
$$f(x^N) - f(x^*) \le \frac{L||x^0 - x^*||^2}{2N^2}$$

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} ||x^k - x^*||^2$$

Guarantees that
$$f(x^N) - f(x^*) \le \frac{L||x^0 - x^*||^2}{2N^2}$$

Our algorithm produces output s.t. $f(x^k) - f(x^*) \le \varepsilon$

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} ||x^k - x^*||^2$$

Guarantees that $f(x^N) - f(x^*) \le \frac{L||x^0 - x^*||^2}{2N^2}$

Suppose we're given

Our algorithm produces output s.t. $f(x^k) - f(x^*) \le \varepsilon$

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} ||x^k - x^*||^2$$

Suppose

we're given

Guarantees that $f(x^N) - f(x^*) \le \frac{L||x^0 - x^*||^2}{2N^2}$

Our algorithm produces output s.t. $f(x^k) - f(x^*) \le \varepsilon$

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} ||x^k - x^*||^2$$

How many iterations to reach $\varepsilon/2$?

$$||x^k - x^*||^2 \le \frac{2\varepsilon}{\mu}$$

$$N = \sqrt{2L/\mu}$$
 yields $f(x^N) - f(x^*) \le \frac{\epsilon}{2}$

How many iterations to reach $\varepsilon/2$?

Recall we have

$$||x^k - x^\star||^2 \le \frac{2\varepsilon}{\mu}$$

$$N = \sqrt{2L/\mu}$$
 yields $f(x^N) - f(x^*) \le \frac{\epsilon}{2}$

Tool 3: Restarting Methods

Recall we have

$$||x^k - x^\star||^2 \le \frac{2\varepsilon}{\mu}$$

After restarting $f(x^N) - f(x^*) \le \frac{L||x^k - x^*||^2}{2N^2}$

$$N = \sqrt{2L/\mu}$$
 yields $f(x^N) - f(x^*) \le \frac{\epsilon}{2}$

Tool 3: Restarting Methods

 $N = \sqrt{2L/\mu}$ yields $f(x^N) - f(x^*) \le \frac{\varepsilon}{2}$

Suppose $f(x) = \sum_{j=1}^{m} \lambda_{j}^{*} g_{j}(x)$

Each g_j is (μ_j, q_j) -uniformly convex

$$f(x) - f(x^*) \ge \sum_{j=1}^{m} \lambda_j^* \frac{\mu_j}{q_j + 1} ||x - x^*||^{q_j + 1}$$

General Growth Condition

Suppose
$$f(x) = \sum_{j=1}^{m} \lambda_{j}^{\star} g_{j}(x)$$

Each g_j is (μ_j, q_j) -uniformly convex

$$f(x) - f(x^*) \ge \sum_{j=1}^m \lambda_j^* \frac{\mu_j}{q_j + 1} ||x - x^*||^{q_j + 1}$$

General Growth Condition

Suppose
$$f(x) = \sum_{j=1}^{m} \lambda_{j}^{\star} g_{j}(x)$$

Each g_j is (μ_j, q_j) -uniformly convex

$$f(x) - f(x^*) \ge \underbrace{\sum_{j=1}^{m} \lambda_j^* \frac{\mu_j}{q_j + 1} \|x - x^*\|^{q_j + 1}}_{G_x(\|x - x^*\|)}$$

Suppose we're given

$$f(x^k) - f(x^*) \ge G_X \left(\|x^k - x^*\| \right)$$

Suppose we're given

Our algorithm produces output s.t. $f(x^k) - f(x^*) < \varepsilon$

$$f(x^k) - f(x^*) \ge G_x \left(\|x^k - x^*\| \right)$$

Suppose we're given Our algorithm produces output

s.t.
$$f(x^k) - f(x^*) \le \varepsilon$$

$$f(x^k) - f(x^*) \ge G_X (||x^k - x^*||)$$

$$f(x^N) - f(x^*) \le \frac{L_{\varepsilon,r}^{ADA} \|x^0 - x^*\|^2}{2N^2}$$

Suppose we're given

Our algorithm produces output s.t. $f(x^k) - f(x^k) \le \varepsilon$

$$f(x^k) - f(x^*) \ge G_x (||x^k - x^*||)$$

How many iterations to reach $\varepsilon/2$?

$$f(x^N) - f(x^*) \le \frac{L_{\varepsilon,r}^{\text{ADA}} \|x^k - x^*\|^2}{2N^2}$$

$$N = \sqrt{\frac{2L_{\varepsilon,r}^{\mathrm{ADA}}(G_{\mathsf{x}}^{-1}(\varepsilon))^2}{2\varepsilon}}$$
 yields $f(x^N) - f(x^\star) \le \varepsilon$

How many iterations to reach $\varepsilon/2$?

After restarting
$$f(x^N) - f(x^*) \le \frac{L_{\varepsilon,r}^{\text{ADA}} \|x^k - x^*\|^2}{2N^2}$$

$$N = \sqrt{\frac{2L_{\varepsilon,r}^{\text{ADA}}(G_{x}^{-1}(\varepsilon))^{2}}{2\varepsilon}}$$
yields $f(x^{N}) - f(x^{*}) \le \frac{1}{2\varepsilon}$

How many iterations to reach $\varepsilon/2$?

After restarting
$$f(x^N) - f(x^*) \le \frac{L_{\varepsilon,r}^{ADA} ||x^k - x^*||^2}{2N^2}$$

$$N = \sqrt{\frac{2L_{\varepsilon,r}^{\mathrm{ADA}}(G_{\mathrm{x}}^{-1}(\varepsilon))^2}{2\varepsilon}}$$
 yields $f(x^N) - f(x^\star) \leq \frac{\varepsilon}{2}$

Approximate Dualized Aggregate Convexity Constant

Approximate Dualized Aggregate Convexity Constant

$$\mu_arepsilon^{\mathtt{ADA}} := \left\{ \mu^{\mathtt{ADA}} > 0 : rac{\mu^{\mathtt{ADA}}}{2} = \sum_{j=1}^m \lambda_j^\star rac{\mu_j}{q_j + 1} (arepsilon/\mu^{\mathtt{ADA}})^{rac{q_j - 1}{2}}
ight\}$$

Approximate Dualized Aggregate Smoothness Constant III

$$\boxed{ L_{\varepsilon,r}^{\text{ADA}} := \left\{ L^{\text{ADA}} > 0 : L^{\text{ADA}} = \sum_{j=1}^{m} \left[\frac{1 - p_{j}}{1 + p_{j}} \cdot \frac{m\sqrt{L^{\text{ADA}}}}{\varepsilon} \cdot \min\left\{ \frac{4D_{x}}{\sqrt{\varepsilon}}, \frac{8}{\sqrt{\mu_{\varepsilon}^{\text{ADA}}}} \right\} \right]^{\frac{1 - p_{j}}{1 + p_{j}}} \left[(\lambda_{j}^{\star} + r)L_{j} \right]^{\frac{2}{1 + p_{j}}} \right\} }$$

Algorithms and Analysis

$$F(x) = h(\underbrace{g_1(x), ..., g_m(x)}_{g(x)}) + u(x)$$

$$\mathcal{L}(x;\lambda) := \langle \lambda, g(x) \rangle - h^*(\lambda) + u(x)$$

$$F(x) = h(\underbrace{g_1(x), ..., g_m(x)}_{g(x)}) + u(x)$$

$$\mathcal{L}(x; \lambda) := \langle \lambda, g(x) \rangle - h^*(\lambda) + u(x)$$

$$\mathcal{L}(x;\lambda) := \langle \lambda, g(x) \rangle - h^*(\lambda) + u(x)$$

$$\mathcal{L}(x;\lambda,\nu) := \langle \lambda, \nu x - g^*(\nu) \rangle - h^*(\lambda) + u(x)$$

$$\text{conjugate of g}$$

$$\mathcal{L}(x; \lambda, \nu) := \langle \lambda, \underbrace{\nu x - g^*(\nu)}_{\text{conjugate of g}} \rangle - h^*(\lambda) + u(x)$$

Gap Function

$$Q(z,\hat{z}) = \mathcal{L}(x;\hat{\lambda},\hat{\nu}) - \mathcal{L}(\hat{x};\lambda,\nu)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{x}(z^t;z)$$

$$\mathcal{L}(x^t; \lambda, \nu) - \mathcal{L}(x^t; \lambda, \nu^t)$$

$$= \langle \lambda, \nu x^t - g^*(\nu) \rangle \boxed{-\langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle}$$

$$\mathcal{L}(x^t; \lambda, \nu^t) - \mathcal{L}(x^t; \lambda^t, \nu^t)$$

$$= \langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda) \left[- \left[\langle \lambda^t, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda^t) \right] \right]$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \right\rangle + u(x^t) - \left\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \right\rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$\mathcal{L}(x^t; \lambda, \nu) - \mathcal{L}(x^t; \lambda, \nu^t)$$

$$= \langle \lambda, \nu x^t - g^*(\nu) \rangle \boxed{-\langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle}$$

$$\mathcal{L}(x^{t}; \lambda, \nu^{t}) - \mathcal{L}(x^{t}; \lambda^{t}, \nu^{t})$$

$$= \langle \lambda, \nu^{t} x^{t} - g^{*}(\nu^{t}) \rangle - h^{*}(\lambda) \left[- \left[\langle \lambda^{t}, \nu^{t} x^{t} - g^{*}(\nu^{t}) \rangle - h^{*}(\lambda^{t}) \right] \right]$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left[\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \rangle + u(x^t) \right] - \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{x}(z^t;z)$$

$$\mathcal{L}(x^t; \lambda, \nu) - \mathcal{L}(x^t; \lambda, \nu^t)$$

$$= \langle \lambda, \nu x^t - g^*(\nu) \rangle \left[-\langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle \right]$$

$$\mathcal{L}(x^t; \lambda, \nu^t) - \mathcal{L}(x^t; \lambda^t, \nu^t)$$

$$= \langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda) \left[- \left[\langle \lambda^t, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda^t) \right] \right]$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left[\left\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \right\rangle + u(x^t) \right] - \left\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \right\rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$\mathcal{L}(x^t; \lambda, \nu) - \mathcal{L}(x^t; \lambda, \nu^t)$$

$$= \langle \lambda, \nu x^t - g^*(\nu) \rangle \left[-\langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle \right]$$

$$\mathcal{L}(x^t; \lambda, \nu^t) - \mathcal{L}(x^t; \lambda^t, \nu^t)$$

$$= \langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda) \left[- \left[\langle \lambda^t, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda^t) \right] \right]$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left[\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \rangle + u(x^t) \right] - \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$\nu_j^t \leftarrow \operatorname{argmax}_{\nu_j \in V_j} \langle \nu, \tilde{\boldsymbol{x}}^t \rangle - \boldsymbol{g}_j^*(\nu) - \tau_t U_{\boldsymbol{g}_j^*}(\nu_j; \nu_j^{t-1})$$

$$\mathcal{L}(x^t; \lambda, \nu^t) - \mathcal{L}(x^t; \lambda^t, \nu^t)$$

$$= \langle \lambda, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda) \left[- \left[\langle \lambda^t, \nu^t x^t - g^*(\nu^t) \rangle - h^*(\lambda^t) \right] \right]$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left[\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \rangle + u(x^t) \right] - \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$u_j^t \leftarrow \operatorname{argmax}_{\nu_j \in V_j} \langle \nu, \tilde{x}^t \rangle - g_j^*(\nu) - \tau_t U_{g_j^*}(\nu_j; \nu_j^{t-1})$$

$$\lambda^t \leftarrow \operatorname{argmax}_{\lambda \in \Lambda} \langle \lambda, \nu^t \tilde{x}^t - g^*(\nu^t) \rangle - h^*(\lambda) - \frac{\gamma_t}{2} \|\lambda - \lambda^{t-1}\|^2$$

$$\mathcal{L}(x^t; \lambda^t, \nu^t) - \mathcal{L}(x; \lambda^t, \nu^t)$$

$$= \left[\langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x^t \rangle + u(x^t) \right] - \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle - f(x)$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$\nu_j^t \leftarrow \operatorname{argmax}_{\nu_j \in V_j} \langle \nu, \tilde{x}^t \rangle - g_j^*(\nu) - \tau_t U_{g_j^*}(\nu_j; \nu_j^{t-1})$$

$$\lambda^t \leftarrow \operatorname{argmax}_{\lambda \in \Lambda} \langle \lambda, \nu^t \tilde{x}^t - g^*(\nu^t) \rangle - h^*(\lambda) - \frac{\gamma_t}{2} \|\lambda - \lambda^{t-1}\|^2$$

$$x^t \leftarrow \operatorname{argmin}_{x \in \mathcal{X}} \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle + u(x) + \frac{\eta_t}{2} \|x - x^{t-1}\|^2$$

$$Q(z^t;z) = Q_{\nu}(z^t;z) + Q_{\lambda}(z^t;z) + Q_{\lambda}(z^t;z)$$

$$u^t \leftarrow \nabla g(\underline{x}^t), \ \underline{x}^t \leftarrow \frac{\tau_t \underline{x}^{t-1} + \widetilde{x}^t}{1 + \tau_t} \text{ with } \widetilde{x}^t = x^{t-1} + \theta_t(x^{t-1} - x^{t-2})$$

$$\lambda^t \leftarrow \operatorname{argmax}_{\lambda \in \Lambda} \langle \lambda, \nu^t \tilde{x}^t - g^*(\nu^t) \rangle - h^*(\lambda) - \frac{\gamma_t}{2} \|\lambda - \lambda^{t-1}\|^2$$

$$x^t \leftarrow \operatorname{argmin}_{x \in \mathcal{X}} \langle \sum_{i=1}^m \lambda_i^t \nu_i^t, x \rangle + u(x) + \frac{\eta_t}{2} ||x - x^{t-1}||^2$$

The Universal Fast Composite Method (UFCM)

```
Algorithm 1 Universal Fast Composite Method (UFCM)
  Input z^0 \in \mathcal{X} \times \Lambda, outer loop iteration count T, and smoothness constant L_{\varepsilon,r}^{ADA}
     Initialize x^{-1} = \underline{x}^0 = y_0^{(1)} = x^0 \in \mathcal{X}, \ \lambda_{-1}^{(1)} = \lambda_0^{(1)} = \lambda^0 \in \Lambda, \text{ and parameters } \{\theta_t\}, \{\eta_t\}, \{\tau_t\}, \{\omega_t\} \text{ as } \{\eta_t\}, \{
  a function of L_{\varepsilon,r}^{ADA}
           \begin{array}{l} \text{1: Set } \nu^0 = \nabla \overline{g}(x^0). \\ \text{2: for } t = 1, \ 2, \ 3, \ \dots, \ T \ \mathbf{do} \\ \text{3: } \qquad \text{Set } \underline{x}^t \leftarrow (\tau_t \underline{x}^{t-1} + \tilde{x}^t)/(1 + \tau_t) \text{ where } \tilde{x}^t = x^{t-1} + \theta_t(x^{t-1} - x^{t-2}) \end{array}
                                            Calculate inner loop iteration limit S_t, paramters \beta^{(t)}, \gamma^{(t)}, and \rho^{(t)}
        7: Set \tilde{h}^{(t),s} = \begin{cases} (\nu^t)^T \lambda_0^{(t)} + \rho^{(t)}(\nu^{t-1})^T (\lambda_0^{(t)} - \lambda_{-1}^{(t)}) & \text{if } s = 1, \\ (\nu^t)^T \lambda_{s-1}^{(t)} + (\nu^t)^T (\lambda_{s-1}^{(t)} - \lambda_{s-2}^{(t)}) & \text{otherwise} \end{cases}

8: Solve y_s^{(t)} \leftarrow \underset{y \in \mathcal{X}}{\operatorname{argmin}} \left\langle \tilde{h}^{(t),s}, y \right\rangle + u(y) + \frac{\eta_t}{2} \|y - x^{t-1}\|^2 + \frac{\beta^{(t)}}{2} \|y - y_{s-1}^{(t)}\|^2

9: Solve \lambda_s^{(t)} \leftarrow \underset{\lambda \in \mathcal{X}}{\operatorname{argmin}} \left\langle \lambda, \nu^t (y_s^{(t)} - x^t) + g(\underline{x}^t) \right\rangle - h^*(\lambda) - \frac{\gamma^{(t)}}{2} \|\lambda - \lambda_{s-1}^{(t)}\|^2
 \begin{array}{ll} \text{10:} & \quad \textbf{end for} \\ \text{11:} & \quad \text{Set } \lambda_0^{(t+1)} = \lambda_{S_t}^{(t)}, \, \lambda_{-1}^{(t+1)} = \lambda_{S_{t-1}}^{(t)}, \, y_0^{(t+1)} = y_{S_t}^{(t)} \\ \text{12:} & \quad \text{Set } x^t = \sum_{s=1}^{S_{t-1}} y_s^{(t)}/S_t \text{ and } \bar{\lambda}^t = \sum_{s=1}^{S_t} \lambda_s^{(t)}/S_t \\ \end{array} 
        14: return (\bar{x}^T, \bar{\lambda}^T) := \sum_{t=1}^T \omega_t (x^t, \tilde{\lambda}^t) / (\sum_{t=1}^T \omega_t)
```

Figure: Modified from [3]

Restarted-UFCM

Algorithm 2 Restarted Universal Fast Composite Method (R-UFCM)

Input $z^0 \in \mathcal{X} \times \Lambda$, distance bounds D_x and D_λ , target accuracy $\varepsilon > 0$, constants $L_{\varepsilon,r}^{ADA}$ and μ_{ε}^{ADA} , and UFCM execution count $K = \left[\log_2\left(\frac{Q(\tilde{z}^0, \hat{z}) + \varepsilon}{\varepsilon}\right)\right]$

```
1: Set D_x^{(0)}, D_x^{(0)} and \{T_k\} according to (5.3)
```

2: **for**
$$k = 0, 1, \dots, K - 1$$
 do

3: Run UFCM(
$$z^k$$
, $\lceil T_k \rceil$, $L_{\varepsilon,r}^{\mathtt{ADA}}$) returning output $(\bar{x}^{T_k,k}, \bar{\lambda}^{T_k,k})$

4: Set
$$(x^{k+1}, D_x^{(k+1)}) = \begin{cases} (\bar{x}^{T_k k}, \sqrt{2^{K-k} \varepsilon / \mu_{\varepsilon}^{\mathsf{ADA}}}) & \text{if } \mu_{\varepsilon}^{\mathsf{ADA}} \ge 4\varepsilon / D_x^2 \\ (x^0, D_x) & \text{otherwise} \end{cases}$$

5: Set $(\lambda^{k+1}, D_{\lambda}^{(k+1)}) = \begin{cases} (\bar{\lambda}^{T_k k}, \sqrt{2^{K-k} \varepsilon L_h}) & \text{if } L_h \le D_{\lambda}^2 / \varepsilon \\ (\lambda^0, D_{\lambda}) & \text{otherwise} \end{cases}$

5: Set
$$(\lambda^{k+1}, D_{\lambda}^{(k+1)}) = \begin{cases} (\bar{\lambda}^{T_k, k}, \sqrt{2^{K-k}\varepsilon L_h}) & \text{if } L_h \leq D_{\lambda}^2 \end{cases}$$

of Set
$$(A, D_{\lambda}) = (\lambda^{0}, D_{\lambda})$$
 otherwise

6: Set
$$z^{k+1} = (x^{k+1}, \lambda^{k+1})$$

7: end for

Figure: Restarted Variant

Universally Optimal Guarantees

Theorem 1: $\mathcal{O}\left(\sqrt{\frac{L_{\varepsilon,r}^{\text{ADA}}D_x^2}{\mu_{\varepsilon}^{\text{ADA}}}}\right)$ total gradient calls to g

when the objective is sufficiently convex $(\mu_{\varepsilon}^{\text{ADA}} \geq \varepsilon/D_{\text{x}}^2)$

Theorem 2:
$$\mathcal{O}\left(\sqrt{\frac{L_{\varepsilon,r}^{\text{ADA}}}{\mu_{\varepsilon}^{\text{ADA}}}}\log\left(\frac{1}{\varepsilon}\right)\right)$$
 total gradient calls to g

Universally Optimal Guarantees

Suppose g is (L, p)-Hölder smooth

$$\mathcal{O}\left(\left(\frac{L}{\varepsilon}\right)^{\frac{2}{1+3p}} \|x^0 - x^*\|^{\frac{2+2p}{1+3p}}\right)$$
total gradient calls to g

Suppose g is (L, p)-Hölder smooth

$$\mathcal{O}\left(\left(\frac{L}{\varepsilon}\right)^{\frac{2}{1+3p}} \|x^0 - x^\star\|^{\frac{2+2p}{1+3p}}\right)$$
 total gradient calls to g

$$L_{arepsilon,r}^{ ext{ADA}} = (1+r)^{rac{4}{1+3p}} \left[rac{1-p}{1+p} \cdot rac{4D_{ ext{X}}}{arepsilon\sqrt{arepsilon}}
ight]^{rac{2-2p}{1+3p}} L^{rac{4}{1+3p}}$$

$$\mathcal{O}\left(\sqrt{\frac{L_{\varepsilon,r}^{\text{ADA}}D_{x}^{2}}{\varepsilon}}\right)$$

$$= \mathcal{O}\left(\sqrt{\left(\frac{D_{x}}{\varepsilon\sqrt{\varepsilon}}\right)^{\frac{2-2p}{1+3p}}\frac{L^{\frac{4}{1+3p}}D_{x}^{2}}{\varepsilon}}{\varepsilon}\right)$$

$$= \mathcal{O}\left(\left(\frac{L}{\varepsilon}\right)^{\frac{2}{1+3p}}D_{x}^{\frac{2+2p}{1+3p}}\right)$$

$$L_{\varepsilon,r}^{\text{ADA}} = (1+r)^{\frac{4}{1+3p}} \left[\frac{1-p}{1+p} \cdot \frac{4D_x}{\varepsilon\sqrt{\varepsilon}} \right]^{\frac{2-2p}{1+3p}} L^{\frac{4}{1+3p}}$$

$$\mathcal{O}\left(\sqrt{\frac{L_{\varepsilon,r}^{\mathtt{ADA}}D_{\mathsf{x}}^{2}}{\varepsilon}}\right)$$

$$= \mathcal{O}\left(\sqrt{\left(\frac{D_{\mathsf{x}}}{\varepsilon\sqrt{\varepsilon}}\right)^{\frac{2-2\rho}{1+3\rho}}\frac{L^{\frac{4}{1+3\rho}}D_{\mathsf{x}}^{2}}{\varepsilon}}\right)$$

$$= \mathcal{O}\left(\left(\frac{L}{\varepsilon}\right)^{\frac{2}{1+3\rho}}D_{\mathsf{x}}^{\frac{2+2\rho}{1+3\rho}}\right)$$

Suppose g is (L, p)-Hölder smooth and (μ, q) -uniformly convex

$$\begin{cases} \mathcal{O}\left(\left(\frac{L^{1+q}}{\mu^{1+p}\varepsilon^{q-p}}\right)^{\frac{2}{(1+3p)(1+q)}}\right) & \text{if } q>p \ , \\ \mathcal{O}\left(\left(\frac{L^{1+q}}{\mu^{1+p}}\right)^{\frac{2}{(1+q)(1+3p)}}\log\left(\frac{G(x^0)-G^*}{\varepsilon}\right)\right) & \text{if } q=p \\ & \text{total gradient calls to } g \end{cases}$$

Suppose g is (L, p)-Hölder smooth and (μ, q) -uniformly convex

$$\begin{cases} \mathcal{O}\left(\left(\frac{L^{1+q}}{\mu^{1+p}\varepsilon^{q-p}}\right)^{\frac{2}{(1+3p)(1+q)}}\right) & \text{if } q>p \ , \\ \mathcal{O}\left(\left(\frac{L^{1+q}}{\mu^{1+p}}\right)^{\frac{2}{(1+q)(1+3p)}}\log\left(\frac{G(x^0)-G^\star}{\varepsilon}\right)\right) & \text{if } q=p \\ & \text{total gradient calls to } g \end{cases}$$

$$L_{arepsilon,r}^{ ext{ADA}} = \left[rac{1-p}{1+p} \cdot rac{8}{arepsilon\sqrt{\mu_{arepsilon}^{ ext{ADA}}}}
ight]^{rac{2-2p}{1+3p}} L^{rac{4}{1+3p}}$$

$$\mu_{arepsilon}^{\mathtt{ADA}} \, = \, 2 \left(rac{\mu}{1+q}
ight)^{rac{2}{1+q}} \, arepsilon^{rac{q-1}{q+1}}$$

$$\begin{split} \tilde{\mathcal{O}}\left(\sqrt{\frac{L_{\varepsilon,r}^{\text{ADA}}}{\mu_{\varepsilon}^{\text{ADA}}}}\right) \\ &= \tilde{\mathcal{O}}\left(\frac{(\varepsilon\sqrt{\mu_{\varepsilon}^{\text{ADA}}})^{-\frac{1-p}{1+3p}}L^{\frac{2}{1+3p}}}{\sqrt{\mu_{\varepsilon}^{\text{ADA}}}}\right) \\ &= \tilde{\mathcal{O}}\left(\left(\frac{L^{1+q}}{\mu^{1+p}\varepsilon^{q-p}}\right)^{\frac{2}{(1+3p)(1+q)}}\right) \;, \end{split}$$

$$L_{arepsilon,r}^{ ext{ADA}} = \left[rac{1-p}{1+p} \cdot rac{8}{arepsilon\sqrt{\mu_{arepsilon}^{ ext{ADA}}}}
ight]^{rac{2-2p}{1+3p}} L^{rac{4}{1+3p}}$$

$$\mu_{arepsilon}^{\mathtt{ADA}} \, = \, 2 \left(rac{\mu}{1+q}
ight)^{rac{2}{1+q}} \, arepsilon^{rac{q-1}{q+1}}$$

References

Yurii Nesterov.

Sebastian Pokutta.

Universal gradient methods for convex optimization problems.

Mathematical Programming, 152(1–2):381–404, May 2014.

Cheat sheet: Smooth convex optimization.

https://www.pokutta.com/blog/research/2018/12/06/cheatsheet-smooth-idealized.html.

Zhe Zhang and Guanghui Lan.

Solving convex smooth function constrained optimization is almost as easy as unconstrained optimization. arXiv preprint arXiv:2210.05807, 2022.