A Universally Optimal Method for Minimizing
Heterogeneously Smooth and Convex

Compositions

Aaron Zoll

Department of Applied Math and Statistics
Johns Hopkins University

March 10th 2025

DA

Where do we start?

Where do we start?

Compositions?

Where do we start?

Compositions?

Heterogeneity?

Where do we start?

Compositions?

Heterogeneity?

Smoothness...

Convexity...

Generalized?

Our Constants

Heterogeneity?

Compositions?

Smoothness... .
Universally

Optimal
Guarantees?

Convexity...
Generalized?

r Constants

Compositions? Azt

Two Lovely
Constants

Smoothness...
Convexity...
Generalized?

Universally
Optimal
Guarantees?

Setup
@0000

Compositions and Heterogeneity

Setup
(o] Jelele]

Composite is an Amazing Model

Composite

Optimization

Setup
(o] Jelele]

Composite is an Amazing Model

Composite
Optimization

Finite

Summations

Setup
(o] Jelele]

Composite is an Amazing Model

Composite
Optimization

Summations

Constrained

Optimization

Setup
(o] Jelele]

Composite is an Amazing Model

Composite
Optimization

Summations

Constrained

Optimization

Minimizing

Maximums

[m]

=

Setup
(o] Jelele]

Composite is an Amazing Model

Composite
Optimization

Summations

77_

smoothing
Constrained

Optimization

Minimizing

Maximums

[m]

=

Setup
(o] Jelele]

Composite is an Amazing Model

Summations

77_
smoothing

Constrained Minimizing
Optimization

Maximums

[m]

=

Setup
(o] Jelele]

Composite is an Amazing Model

77_
smoothing

Constrained Minimizing
Optimization

Maximums

[m]

=

Setup
(o] Jelele]

Composite is an Amazing Model

77_
smoothing

Minimizing

Maximums

[m]

=

Setup
(o] Jelele]

Composite is an Amazing Model

77_
smoothing

N)

Setup
(o] Jelele]

Composite is an Amazing Model

Zy +
ngo(zl, Zm)

Setup
[e]e] lele]

Heterogeneity is an Amazing Model

Consider the following ML problem of support vector machines

DA

Consider the following ML problem of support vector machines

n
. 2
min wl|5+ C i
My [lwll3 ;:1 &i

s.t.

yi(wTx —b) 2 1-¢&
£ >0

M 2
m 1—vi(w x —
W,'n ||W||2 C ’E - rnax{O, y,(W Xj b)}

Setup
000e0

We may have some adversarial type problem

min max {||Ax —b||5}

4 3
xeX p6{17§7§72}

Setup
0000e

Heterogeneity is an Amazing Model

Perhaps we're analyzing a mixture model or log-likelihood

Not smooth or Lipschitz!

DA

Perhaps we're analyzing a mixture model or log-likelihood

m
min log ;exp(gj(X))
J:

gi(x) = x°

g(x) = [2x — 1]

Not smooth or Lipschitz!

Note: Structured components
== structured objective!

Curvature Bounds
0000000000

Smoothness and Convexity (Generalized)

Curvature Bounds
0®00000000

Two Dual Notions

“[-smoothness”

DA

Setup Curvature Bounds Our Constants

[) O®@00000000

[VF(x) = VE(y)| < Llx =y “[-smoothness”

“p-strong convexity” || f(y) = f(x) + (VF(x),y —x) + 5lly — x|

Curvature Bounds Our Constants

O®@00000000

f(y) < f(x) +(VFf(x),y —x) + élly = X||2 “[-smoothness”

“p-strong convexity” || f(y) = f(x) + (VF(x),y —x) + 5lly — x|

Curvature Bounds
[e]e] lelelelelele]e]

Smooth and Strong Convexity

CONVEXITY AND SMOOTHNESS

SMOOTHNESS
\ 3 e
\\
>

STRONG
CONVEXITY

A

CONVEXITY
X

Figure: [2] Smoothness and Strong Convexity Visualized

[m]

=

https://www.desmos.com/calculator/sybazxt9yh
https://www.desmos.com/calculator/f2nvtdsza2

Curvature Bounds
[e]e]e] lelelelele]e]

Smooth and Strong Convexity Rates

L-smooth 1-Strongly convex!

YIn the nonsmooth case, we assume f is Lipschitz with-rank Ms

Curvature Bounds
[e]e]e]e] Telelele]e]

Generalizing Smoothness

DA

Curvature Bounds

0O000@00000

Can we generalize,
still using first
order information?

Smoothness
seems pretty
restrictive.

Curvature Bounds
0000080000

(L, p)-Holder Smoothness

(L, p)-Halder
continuous gradient

DA

Curvature Bounds
0000080000

(L, p)-Holder Smoothness

(L, p)-Halder
continuous gradient

(p + 1)-degree

upper bound

DA

Curvature Bounds

O00000e000

Can we analogously
generalize the
strong convexity?

Curvature Bounds ivati Our Constants

O00000e000

Can we analogously
generalize the
strong convexity?

f(y) = f(X)—i-(Vf(x),y—x>+TJ%Hy_XH1+q

Curvature Bounds
0000000e00

Figure: 2-dim plot and 3-dim plot

https://www.desmos.com/calculator/tzsuxokitu
https://www.desmos.com/3d/ml0oh32gc2

Curvature Bounds
0000000080

Universal Guarantees?

Recall, we minimize F(x) = h(gi(x), ..., gm(x)). Each component
having its own (L;, pj)-Hdlder smoothness and (u;, g;)-uniform

convexity.

Curvature Bounds Motivati r Constants

0000000080

Recall, we minimize F(x) = h(gi(x), ..., gm(x)). Each component
having its own (L;, pj)-Holder smoothness and (1}, g;)-uniform
convexity.

Suppose we're given magic
[and i that captures
all the information for

upper/lower curvature...

Curvature Bounds Motivati r Constants

0000000080

Recall, we minimize F(x) = h(gi(x), ..., gm(x)). Each component
having its own (L;, pj)-Holder smoothness and (1}, g;)-uniform
convexity.

Suppose we're given magic
[and i that captures
all the information for

upper/lower curvature...

What guarantees
should we hope for?

Curvature Bounds
000000000 e

Aggregated Smooth and Strong Convexity Rates?

[-upper bounded

ji-lower bounded

Motivating Our Constants
000000000

Motivating our Lovely Constants

Motivating Our Constants
0O®0000000

From Constraints to Compositions

Motivating Our Constants
0O®0000000

From Constraints to Compositions

min go(x) +

LZSO(gl(X)7 "'7gm(x))

Motivating Our Constants
0O®0000000

From Constraints to Compositions

X
LZSO(gl(X)7 "'7gm(x))

min go(x)+

h(gl(X)7 "'7gm(X))

Motivating Our Constants

De “composing”

DA

Motivating Our Constants

De “composing”

—

~

m
P« = min rggggo(X) +) Ng(x)

j=1

Motivating Our Constants
Three Notions

Motivating Our Constants
Three Notions

Approximate

Motivating Our Constants
Three Notions

Approximate

Dualized

Motivating Our Constants

[e]o]e] le]ele]e]e]

Approximate

Dualized

Aggregate

Motivating Our Constants
0000e0000

Tool 1: Fenchel Conjugates

Dualized

DA

Motivating Our Constants
0000e0000

Tool 1: Fenchel Conjugates

Dualized

DA

Motivating Our Constants
0000e0000

Tool 1: Fenchel Conjugates

Dualized

DA

Motivating Our Constants
000008000

Lagrangian Reformulation (via conjugates)

DA

Motivating Our Constants
000008000

Lagrangian Reformulation (via conjugates)

~

Px =

min go(x) +

m

max
AER™M

Ajgi(x) — t;<0(N)
=1

Motivating Our Constants
000008000

Lagrangian Reformulation (via conjugates)

—

~

Px = min max
xeX A

naxan() + 3 V()

J=1

Motivating Our Constants
000000e00

De “composing” (again, generally)

DA

Motivating Our Constants Defining Our C

0O00000@00

pe = mingo(x) +

XEX

h(gi1(x), ...

, &m(x))

\ h(g(x)) = max > Ajgj(x) — h" (V)
j=1

~

Px = mm maxgo

+Z)\Jg_,

— h*(\)

Motivating Our Constants

Sums are Wonderful

DA

Motivating Our Constants

000000080

Aggregate

g £ =) + 2Vt

each gj is Lj-smooth

Z A gj(x) is Z A} Lj-smooth
=0 =0

Motivating Our Constants
00000000e
o *
Inaccessible *!

Approximate

DA

Motivating Our Constants
00000000e
o *
Inaccessible *!

Approximate

restrict A € A, := B(*,r)

> Ajgi(x) is (A} + r)Lj-smooth
=0 iz

Defining Our Constants
00000000000

Defining Our Constants

Defining Our Constants

O®@000000000

When g; is
& WLOG let go(x) = 0

Lj-smooth

m
LR = N (AF +)Ly
j=1

Our Constants Defining Our Constants

0O0e00000000

Lemma (Lemma 1, Nesterov [1])

1—

1-p
Fix 6 > 0 and (L, p)-Hélder smooth, with Ls > [%H e Lﬁ,

L 4]
F(y) < F() + (VF(x).y = x) + 5 |y = x|+ 5, Vx,y € dom f .
(1)

https://www.desmos.com/calculator/cmmndy7oq1

Constants Defining Our Constants

O00@0000000

When gj is (L, pj)-

Holder smooth

1—pj m] T N —
Lsr = ivp 3 [((XF +r) - L] 7

Constants Defining Our Constants

O00@0000000

When gj is (L, pj)-

Holder smooth

setting § =

&
16124 D7 /<

1—p;

" |1—p; myVIB®E 4D | TP 2

Lo >0 =" TZ{ : ’""T 7| L]
J

ADA . __
La,r s

Jj=1

Defining Our Constants

O000@000000

Suppose
we're given

Defining Our Constants

O000@000000

Guarantees that0 .
f(XN) . f(X*) < L||X2&;< Il

Suppose
we're given

r Constants Defining Our Constants

O000@000000

Guarantees that0 .
F(xN) — F(xr) < ol

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

r Constants Defining Our Constants

O000@000000

Guarantees that0 .
f(XN) . f(X*) < L||X2&;< Il

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

F(xA) = F(x) = Bllx* — |2

Defining Our Constants

O0000e00000

How many iterations

to reach €/27

Defining Our Constants

O0000e00000

Recall we have
Ik — x| < 2

How many iterations

to reach €/27

r Constants Defining Our Constants

O0000e00000

Recall we have
Ixk = x*2 < =

How many iterations After restartingk :
N L||x*—x*
to reach €/27 f(xN) — f(x*) < | o I

r Constants Defining Our Constants

O0000e00000

Recall we have
Ixk—x*|? < %=
1%

How many iterations After restartingk :
N L||x*—x*
to reach €/27 f(xN) — f(x*) < | o I

N = /2L/u yields

f(xN) — f(x*) < &

General Growth Condition

Defining Our Constants
00000080000

DA

General Growth Condition

Defining Our Constants
00000080000

Each gj is (1, gj)-uniformly convex

m
Hj *|1qj+1
f — f(x* >E Ny — q
(X) (X) —j=1 Jq+1”X X H ’

Dur Constants Defining Our Constants

0O00000e0000

Suppose f(x) = Z)\jgj(x)
j=1

Each gj is (1, gj)-uniformly convex

m 1 -
f — f(x*) > * J _ J*||gi+1
(%) (X)_;quﬁlllx X*[|%

Gx([lx—x*1[)

Defining Our Constants

00000008000

Suppose
we're given

Constants Defining Our Constants

00000008000

Guarantees that
*”2

LADf 0__
Fx) — f(xr) < 2L

Suppose
we're given

r Constants Defining Our Constants

00000008000

Guarantees that

LDAX—X*2
Fx) = Fxt) < =

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

r Constants Defining Our Constants

00000008000

Guarantees that

LDAX—X*z
F) = () < S5

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

F(x) = £(x) 2 G ([lx* = x*]])

Defining Our Constants

00000000800

How many iterations

to reach €/27

Defining Our Constants

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

How many iterations

to reach €/27

How many iterations

to reach /27

r Constants Defining Our Constants

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

After restarting

ADA|| k% ||2
f(XN) _ f(X*) < Ls,r“;(N x|

Cur ds ir Constants Defining Our Constants : thms and An

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restarting

LIk —x|1?
to reach £/27 f(xN) — f(x*) < = N

N o= (/2LEG P

2e
yields f(xN) — f(x*) < §

Cur ds ir Constants Defining Our Constants : thms and An

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restartiglﬁ k|2
- Ny - Le,, xK—x*
to reach /27 fF(x™) — f(x*) < 2N

§iADA7

Cur ds ir Constants Defining Our Constants : thms and An

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restarting

LIk —x|1?
to reach £/27 f(xN) — f(x*) < = N

1/ps2t

When g; is (1, q)-
uniformly convex

Defining Our Constants
00000000080

ADA
He

— €l

(G (e/2))?

Constants Defining Our Constants

00000000080

When gj is (1, j)-

uniformly convex

ADA .__ ADA . oA
/,LE = 1% > 0 o

e/t

Il
.Fjs

q_j+1

[
I
-

Defining Our Constants ithms and A

0000000000 e

When g is (L;, pj)-
Hélder smooth and

(w5, gj)-uniformly convex

1—p

m

> 1—p mV/[™ (4D, 8 T

AR NN

2
T S [+ L] ™

Algorithms and Analysis
000000000

Algorithms and Analysis

Extended Lagrangian and Gap Function

Algorithms and Analysis
0e0000000

DA

Algorithms and Analysis
0e0000000

Extended Lagrangian and Gap Function

—

L A) = (A g(x)) = h*(A) + u(x)

=] F = = £ DA

Extended Lagrangian and Gap Function

Algorithms and Analysis
0e0000000

L(x; A\, v) = (N vx — g*(v))—h"(A)4u(x)
—_——

conjugate of g

Extended Lagrangian and Gap Function

Algorithms and Analysis
0e0000000

—

~

Gap Function

Q(z,2) = L(x;\,D) — L(Z\,v)

DA

Algorithms and Analy:

0O0@000000

Our Constants efi O stants Algorithms and Analysis

0O0@000000

|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

L(x5 N\, v) — L(x5 A\, vh)
= (uxt—gm () -\ X — g (V)|

r Constants i Algorithms and Analysis

0O0@000000

|| Q(z5z) = Qu(zhz) + Qu(zhz) + (25 2) ||

L(x5 N\, v) — L(x5 A\, vh)
= Qo — g @) - X - g ()|

L(x5 A\ vt) — L(x5 A vh)
= (A vixt—g* (1)) — B*(N)| = [\, v'x" — g" (V")) — h*(\Y)]

r Constants fining onstants Algorithms and Analysis

0O0@000000

|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

L(x5 N\, v) — L(x5 A\, vh)
= Qo — g @) - X - g ()|

L(x5 N\ vt) — L(x5 A vh)
= (\vixE—g* (V7)) — ()| = [(A v = g"(vf)) — h"(A%)]

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1

r Constants fi sta Algorithms and Analysis

0O0@000000

|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

L(x5 N\ vt) — L(x5 A vh)
= (\vixE—g* (V7)) — ()| = [(A v = g"(vf)) — h"(A%)]

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1

r Constants fi sta Algorithms and Analysis

0O0@000000

|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1

r Constants fi sta Algorithms and Analysis

0O0@000000

I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

A argminxex<zjm:1 AVE x) + u(x) + Zx — xt1|2

r Constants fi sta Algorithms and Analysis

0O0@000000

vt Vg(xt), xt + zj with Xt = xt=1 4 ,(xt~1 — xt72)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

xt argminXeX<Z)\J i x) + u(x) + Z|x — xt=1)12

Algorithms and Analysis
000800000

The Universal Fast Composite Method (UFCM)

Algorithm 1 Universal Fast Composite Method (UFCM)
Input 2 € X x A, outer loop iteration count T, and smoothness constant, LA%
Initialize 2~ = 2” = 45" = 2% € X, A" = A{Y = A € A, and parameters {8}, {me}, {7}, {wi} as
a function of Lé?,‘
1: Set 1 = Vg(a0).
2 fort =1, 2 3, .., Tdo
3 Setzf ¢ (rat! +#)/(1 4 7) where & = 2t~ 4 Gy (2t — 2172)
4 Set v' « Vg(z')
5: Calculate inner loop iteration limit Sy, paramters 3®), v and p(®
6: for s =1,2,...,5; do

P (G +p<”(v'*)7(x§:’ A9 ifs=1,
T Set A = (y‘)T,\U) + (T A /\UJ 2) otherwise
s—1
8: Solve yi! « argmin (I'zm",y> +u(y) + él\y -2 + Hy IJ([) II?
0: Solve A « argmax </\ vy —zt) + g(ﬁ')) —h*(A) = TH/\ - AL’J,II’
NeA
10:

end for
1n: Set /\(H»l) /\(t) /\”“' ,\(gz‘)_ly y (t+1) _ (

122 Setat=):b‘,,y.‘)/& and M = Y5 ,\"’/st
13: end for
14: return (7

= Shw (o 3) / (Shw)

Figure: Modified from [3]

u}
o)

I

i
it
N)
0
?)

Algorithms and Analysis
0000e0000

Restarted-UFCM

Algorithm 2 Restarted Universal Fast Composite Method (R-UFCM)

Input 20 € X x A, distance bounds D, and Dy, target accuracy £ > 0, constants L:’,‘ and ,u;m,
and UFCM execution count K = [logz (%“fmﬂ

1: Set ng, D&m and {T}.} according to (5.3)
2: for k=0,1,....,K — 1do B
3: Run UFCM(zF, [T}], L% returning output (z7F, ATek)

o Set (oM, D) {(f“, V2K ke/don) it jfoh > 4c/ D2

(=", D,) otherwise
5 Set (AeHL, D) (AT \/2K=keLy) if L, < D}/e
- o (A", Dy) otherwise
6 Set 2Kl = (kD AR

7: end for

Figure: Restarted Variant

u}
o)
I

i
it
N)
0
?)

Universally Optimal Guarantees

Algorithms and Analysis
00000e000

DA

Our Constants

Theorem 1: O

total gradient calls to g

i)
LDz
Mg

when the objective
is sufficiently convex
(1t > /D7)

Algorithms and Analysis
00000e000

ADA
L€ r

Theorem 2: O < o log (i))

total gradient calls to g

Immediate Corollaries

Algorithms and Analysis
000000800

DA

Our Constants ini 0 s Algorithms and Analysis

0O00000e00

Suppose g is (L, p)-Holder smooth

—2_ 242
O (5T Ix = x|

total gradient calls to g

Immediate Corollaries

Algorithms and Analysis
000000800

DA

Algorithms and Analysis

0O00000e00

4 =L 4
ADA __ i35 | 1=p 4Dy | 1+3r | 1755
L3 = (1+r)T3 [m . ng] L1+3p

r D
ADA N2
O(Y
€
2—2p 4
D, \ ™% LT% D2
=
ev/e €
L T23p 2+2p
A (e
€
\L J

Immediate Corollaries Il

Algorithms and Analysis
000000080

DA

Our Constants ini 0 s Algorithms and Analysis

000000080

Suppose g is (L, p)-Holder smooth
and (u, g)-uniformly convex

2
[\ TR .
@ ((qup>) ifg>p,

2

o ((i)m log (G()—G)) o=

total gradient calls to g

Immediate Corollaries Il

Algorithms and Analysis
000000080

DA

Algorithms and Analysis

000000080

—
I}

=
il

.8
&4/ AP

_4
L 1+3p

ADA _

¥

=0

ADA
Le o7
ADA

He
(e /%)~ 159 L %

/R
2

[1ta T+3p)(1+a)
MI+P5‘7*P

Algorithms and Analysis
00000000e

References

Yurii Nesterov.

Universal gradient methods for convex optimization problems.
Mathematical Programming, 152(1-2):381-404, May 2014.

Sebastian Pokutta.

Cheat sheet: Smooth convex optimization.
https://www.pokutta.com/blog/research/2018/12/06/cheatsheet-smooth-idealized.html.
Zhe Zhang and Guanghui Lan.

Solving convex smooth function constrained optimization is almost as easy as unconstrained optimization.
arXiv preprint arXiv:2210.05807, 2022.

	Compositions and Heterogeneity
	 Smoothness and Convexity (Generalized)
	Motivating our Lovely Constants
	Defining Our Constants
	Algorithms and Analysis

