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We may have some adversarial type problem

min  max {||Ax —b||5}
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xeX p6{17§7§72}
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Perhaps we're analyzing a mixture model or log-likelihood
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Perhaps we're analyzing a mixture model or log-likelihood

m
min log ;exp(gj(X))
J:

gi(x) = x°

g(x) = [2x — 1]

Not smooth or Lipschitz!

Note: Structured components
== structured objective!
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“p-strong convexity” || f(y) = f(x) + (VF(x),y —x) + 5lly — x|
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Smooth and Strong Convexity

CONVEXITY AND SMOOTHNESS
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Figure: [2] Smoothness and Strong Convexity Visualized
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https://www.desmos.com/calculator/sybazxt9yh
https://www.desmos.com/calculator/f2nvtdsza2
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Smooth and Strong Convexity Rates

L-smooth 1-Strongly convex!

YIn the nonsmooth case, we assume f is Lipschitz with-rank Ms
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Can we generalize,
still using first
order information?

Smoothness
seems pretty
restrictive.
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(L, p)-Holder Smoothness

(L, p)-Halder
continuous gradient

(p + 1)-degree

upper bound

DA



Curvature Bounds

O00000e000

Can we analogously
generalize the
strong convexity?



Curvature Bounds ivati Our Constants

O00000e000

Can we analogously
generalize the
strong convexity?

f(y) = f(X)—i-(Vf(x),y—x>+TJ%Hy_XH1+q
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Figure: 2-dim plot and 3-dim plot


https://www.desmos.com/calculator/tzsuxokitu
https://www.desmos.com/3d/ml0oh32gc2
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Universal Guarantees?

Recall, we minimize F(x) = h(gi(x), ..., gm(x)). Each component
having its own (L;, pj)-Hdlder smoothness and (u;, g;)-uniform

convexity.
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Recall, we minimize F(x) = h(gi(x), ..., gm(x)). Each component
having its own (L;, pj)-Holder smoothness and (1}, g;)-uniform
convexity.

Suppose we're given magic
[ and i that captures
all the information for

upper/lower curvature...

What guarantees
should we hope for?
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Aggregated Smooth and Strong Convexity Rates?

[-upper bounded

ji-lower bounded
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From Constraints to Compositions

min go(x) +

LZSO(gl(X)7 "'7gm(x))
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From Constraints to Compositions

X
LZSO(gl(X)7 "'7gm(x))

min go(x)+

h(gl(X)7 "'7gm(X))
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m
P« = min rggggo(X) +) Ng(x)

j=1
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Tool 1: Fenchel Conjugates
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Tool 1: Fenchel Conjugates
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Lagrangian Reformulation (via conjugates)

~

Px =

min go(x) +

m

max
AER™M

Ajgi(x) — t;<0(N)
=1
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Lagrangian Reformulation (via conjugates)

—

~

Px = min max
xeX A

naxan() + 3 V()

J=1
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De “composing” (again, generally)

DA



Motivating Our Constants Defining Our C

0O00000@00

pe = mingo(x) +

XEX

h(gi1(x), ...

, &m(x))

\ h(g(x)) = max > Ajgj(x) — h" (V)
j=1

~

Px = mm maxgo

+Z)\Jg_,

— h*(\)
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Aggregate

g £ = ) + 2Vt

each gj is Lj-smooth

Z A gj(x) is Z A} Lj-smooth
=0 =0
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Inaccessible \*!

Approximate

restrict A € A, := B(\*,r)

> Ajgi(x) is (A} + r)Lj-smooth
=0 iz
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When g; is
& WLOG let go(x) = 0

Lj-smooth

m
LR = N (AF + )Ly
j=1
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Lemma (Lemma 1, Nesterov [1])

1—

1-p
Fix 6 > 0 and (L, p)-Hélder smooth, with Ls > [%H e Lﬁ,

L 4]
F(y) < F() + (VF(x).y = x) + 5 |y = x|+ 5, Vx,y € dom f .
(1)
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When gj is (L, pj)-

Holder smooth

1—pj m] T N —
Lsr = ivp 3 [((XF +r) - L] 7
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When gj is (L, pj)-

Holder smooth

setting § =

&
16124 D7 /<

1—p;

" |1—p; myVIB®E 4D | TP 2

Lo >0 =" TZ{ : ’""T 7| L]
J
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Guarantees that0 .
f(XN) . f(X*) < L||X2&;< Il

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

F(xA) = F(x) = Bllx* — |2
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Recall we have
Ik — x| < 2

How many iterations

to reach €/27
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Recall we have
Ixk = x*2 < =

How many iterations After restartingk :
N L||x*—x*
to reach €/27 f(xN) — f(x*) < | o I




r Constants Defining Our Constants

O0000e00000

Recall we have
Ixk—x*|? < %=
1%

How many iterations After restartingk :
N L||x*—x*
to reach €/27 f(xN) — f(x*) < | o I

N = /2L/u yields

f(xN) — f(x*) < &
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Each gj is (1, gj)-uniformly convex

m
Hj *|1qj+1
f — f(x* >E Ny — q
(X) (X ) —j=1 Jq+1”X X H ’




Dur Constants Defining Our Constants

0O00000e0000

Suppose f(x) = Z)\jgj(x)
j=1

Each gj is (1, gj)-uniformly convex

m 1 -
f — f(x*) > * J _ J*||gi+1
(%) (X)_;quﬁlllx X*[|%

Gx([lx—x*1[)
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Guarantees that
*”2

LADf 0__
Fx) — f(xr) < 2L

Suppose
we're given
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Guarantees that

LDAX—X*2
Fx) = Fxt) < =

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given
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Guarantees that

LDAX—X*z
F) = () < S5

Our algorithm produces output
st. f(xK) — f(x*) < ¢

Suppose
we're given

F(x) = £(x) 2 G ([lx* = x*]])
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Recall we have
Ixk —x*12 < (G H(e))?

How many iterations

to reach €/27




How many iterations

to reach /27

r Constants Defining Our Constants

00000000800

Recall we have
Ixk —x*12 < (G H(e))?

After restarting

ADA|| k% ||2
f(XN) _ f(X*) < Ls,r“;(N x|
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Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restarting

LIk —x|1?
to reach £/27 f(xN) — f(x*) < = N

N o= (/2LEG P

2e
yields f(xN) — f(x*) < §
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Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restartiglﬁ k|2
- Ny - Le,, xK—x*
to reach /27 fF(x™) — f(x*) < 2N

§iADA7
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Recall we have
Ixk —x*12 < (G H(e))?

How many iterations After restarting

LIk —x|1?
to reach £/27 f(xN) — f(x*) < = N

1/ps2t
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When gj is (1, j)-

uniformly convex

ADA .__ ADA . oA
/,LE = 1% > 0 o

e/t

Il
.Fjs

q_j+1

[
I
-
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When g is (L;, pj)-
Hélder smooth and

(w5, gj)-uniformly convex

1—p

m

> 1—p mV/[™ (4D, 8 T

AR NN

2
T S [ + L] ™
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Extended Lagrangian and Gap Function

—

L A) = (A g(x)) = h*(A) + u(x)

=] F = = £ DA
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L(x; A\, v) = (N vx — g*(v))—h"(A)4u(x)
—_——

conjugate of g
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Gap Function

Q(z,2) = L(x;\,D) — L(Z\,v)
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|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

L(x5 N\, v) — L(x5 A\, vh)
= (uxt—gm () -\ X — g (V)|
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|| Q(z5z) = Qu(zhz) + Qu(zhz) + (25 2) ||

L(x5 N\, v) — L(x5 A\, vh)
= Qo — g @) - X - g ()|

L(x5 A\ vt) — L(x5 A vh)
= (A vixt—g* (1)) — B*(N)| = [\, v'x" — g" (V")) — h*(\Y)]
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|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

L(x5 N\, v) — L(x5 A\, vh)
= Qo — g @) - X - g ()|

L(x5 N\ vt) — L(x5 A vh)
= (\vixE—g* (V7)) — ()| = [(A v = g"(vf)) — h"(A%)]

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1
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|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

L(x5 N\ vt) — L(x5 A vh)
= (\vixE—g* (V7)) — ()| = [(A v = g"(vf)) — h"(A%)]

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1
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|| Q(z4hz) = Qu(zhz) + Q\(zhz) + Qu(zh2) ||

I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

L(x5 A vh) — L(x; A vh)

m

= | Mufx) +u(x) | = (ST A x) — f(x)

i=1
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I/f . argmaxyje‘/j@/’gt) _ gj*(y) — TtUgj*(Vj;Vf_l)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

A argminxex<zjm:1 AVE x) + u(x) + Zx — xt1|2
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vt Vg(xt), xt + zj with Xt = xt=1 4 ,(xt~1 — xt72)

AP argmaxyen (A, VERE — g* (V) — A*(A) — Z[A — ATY2

xt argminXeX<Z )\J i x) + u(x) + Z|x — xt=1)12
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The Universal Fast Composite Method (UFCM)

Algorithm 1 Universal Fast Composite Method (UFCM)
Input 2 € X x A, outer loop iteration count T, and smoothness constant, LA%
Initialize 2~ = 2” = 45" = 2% € X, A" = A{Y = A € A, and parameters {8}, {me}, {7}, {wi} as
a function of Lé?,‘
1: Set 1 = Vg(a0).
2 fort =1, 2 3, .., Tdo
3 Setzf ¢ (rat! +#)/(1 4 7) where & = 2t~ 4 Gy (2t — 2172)
4 Set v' « Vg(z')
5: Calculate inner loop iteration limit Sy, paramters 3®), v and p(®
6: for s =1,2,...,5; do

P (G +p<”(v'*)7(x§:’ A9 ifs=1,
T Set A = (y‘)T,\U) + (T A /\UJ 2) otherwise
s—1
8: Solve yi! « argmin (I'zm",y> +u(y) + él\y -2 + Hy IJ([) II?
0: Solve A « argmax </\ vy —zt) + g(ﬁ')) —h*(A) = TH/\ - AL’J,II’
NeA
10:

end for
1n: Set /\(H»l) /\(t) /\”“' ,\(gz‘)_ly y (t+1) _ (

122 Setat= ):b‘,,y.‘)/& and M = Y5 ,\"’/st
13: end for
14: return (7

= Shw (o 3) / (Shw)

Figure: Modified from [3]

u}
o)

I

i
it
N)
0
?)
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Restarted-UFCM

Algorithm 2 Restarted Universal Fast Composite Method (R-UFCM)

Input 20 € X x A, distance bounds D, and Dy, target accuracy £ > 0, constants L:’,‘ and ,u;m,
and UFCM execution count K = [logz (%“fmﬂ

1: Set ng, D&m and {T}.} according to (5.3)
2: for k=0,1,....,K — 1do B
3: Run UFCM(zF, [T}], L% returning output (z7F, ATek)

o Set (oM, D) {(f“, V2K ke/don) it jfoh > 4c/ D2

(=", D,) otherwise
5 Set (AeHL, D) (AT \/2K=keLy) if L, < D}/e
- o (A", Dy) otherwise
6 Set 2Kl = (kD AR

7: end for

Figure: Restarted Variant

u}
o)
I

i
it
N)
0
?)
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Theorem 1: O

total gradient calls to g

i )
LDz
Mg

when the objective
is sufficiently convex
(1t > /D7)

Algorithms and Analysis
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ADA
L€ r

Theorem 2: O < o log (i))

total gradient calls to g
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Suppose g is (L, p)-Holder smooth

—2_ 242
O (5T Ix = x|

total gradient calls to g
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4 =L 4
ADA __ i35 | 1=p 4Dy | 1+3r | 1755
L3 = (1+r)T3 [m . ng] L1+3p

r D
ADA N2
O( Y
€
2—2p 4
D, \ ™% LT% D2
=
ev/e €
L T23p 2+2p
A (e
€
\L J
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Suppose g is (L, p)-Holder smooth
and (u, g)-uniformly convex

2
[\ TR .
@ ((qup> ) ifg>p,

2

o ((i)m log (G()—G)) o=

total gradient calls to g
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—
I}

=
il

.8
&4/ AP

_4
L 1+3p

ADA _

¥

=0

ADA
Le o7
ADA

He
(e /%)~ 159 L %

/R
2

[ 1ta T+3p)(1+a)
MI+P5‘7*P
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