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Motivation

Let’s start off with an easy question:

What is 1853020188851841×328256967394537077627?

Answer: 608266787713357709119683992618861307

Okay let’s try another

What is 32+43?

Answer: 75

Why is one not easy?

Why are these both equally easy?
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Fun Facts Everyone should Know!

1853020188851841 = 332

328256967394537077627 = 343

How can we use these facts to make the first problem just as easy as
the second?

1853020188851841× 328256967394537077627 = 332 × 343 =
332+43 = 375

This is the essence of math... Math is hard, nearly impossible without
the right tools.

Linear Algebra helps use create tools to answer tricky problems!
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Why Linear Algebra?

Figure: Dr. Edinah Grang Figure: Linearization
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Fields

In order to do linear algebra, we need numbers. Or at the very least, we
need stuff to work with–something that looks familiar (to the real
numbers) but is general enough to handle more complex settings

As we’ll see, the linearity of linear algebra, needs us to be able to add,
scale (multiply by a constant), and distribute the two operations. Thus,
we need an ambient space to do these calculations.
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Fields

Definition

Field: A set F equipped with two operations (+, ·) is a field if:

1 Closure: + : F× F → F
· : F× F → F

2 Associativity: ∀ a, b, c ∈ F

{
a+ (b + c) = (a+ b) + c

a · (b · c) = (a · b) · c

3 Commutativity: ∀ a, b ∈ F

{
a+ b = b + a

a · b = b · a

4 Identities: ∃ 0 ̸= 1 ∈ F such that ∀x ∈ F

{
x + 0 = 0 + x = x

x · 1 = 1 · x = x

5 Inverses:{
∀ a ∈ F,∃ (−a) ∈ F s.t. a+ (−a) = (−a) + a = 0

∀ 0 ̸= b ∈ F,∃ (b−1) ∈ F s.t. b · (b−1) = (b−1) · b = 1

6 Distributivity: ∀ a, b, c ∈ F , a · (b + c) = a · b + a · c
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Examples of Fields

The real numbers: R = {0,−2, 1, π, 2.718, 43, 375, ...} (our base
example)

The complex numbers: C = {a+ bi : a, b ∈ R} =: R⊕ iR (inherits
all the properties from the reals)

The rationals: Q = {m
n : m, n ∈ Z, n ̸= 0} (subset of the reals)

Finite fields: Fp = {0, 1, 2, ...p − 1} for some prime p. Also known as
Z/nZ, the modulus group. (inherits all properties but multiplicative
inverses from the reals, which comes from p being prime)

What if we want to handle multiple values at once? Say we want to
keep track of position with an x, y, and z coordinate.
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Lists

Definition

List: For a fixed natural number n ∈ N, define an n-dimensional list over
field F to be

Fn = {(x1, x2, ..., xn) : xj ∈ F 1 ≤ j ≤ 1}

Remark

We call xj then j th-coordinate
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Operations in Fn

Definition

We can definite the following operations that ”naturally” extend from the
underlying Field

Addition: (+ : Fn × Fn → Fn) is defined component-wise:
(x1, ..., xn) + (y1, ..., yn) := (x1 + y1, ..., xn + yn)

Scalar multiplication: (· : F× Fn → Fn) is component wise too:
λ︸︷︷︸
∈F

· (x1, ..., xn)︸ ︷︷ ︸
∈Fn

:= (λx1, ..., λxn)

(additive) Identity: needs to hold that 0 + x = x+ 0 = x, so we
define 0 = (0, 0, ..., 0)

(additive) Inverse: need for x+−x = 0, so we define
−x = (−x1, ...,−xn)
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Operations in Fn

Remark

We immediately get associativity, commutativity, and distributivity (of
scalar multiplication) from the properties of the underlying field. We also
get uniques of inverses, identities, and the properties that x = 1 · x and
−x = (−1) · x

Proof.

x+ y = (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn) =
(y1 + x1, ..., yn + xn) = (y1, ..., yn) + (x1, ..., xn) = y + x
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Vector Spaces (over a field)

Definition

A Vector Space over a field F is a set V along with

{
+ : V × V → V

· : F× V → V
such that the following holds

1 u + v = v + u for all u, v ∈ V

2 (u + v) + w = u + (v + w) for all u, v ,w ∈ V

3 There exists 0 ∈ V such that 0 + v = v + 0 = v for all v ∈ V

4 For all v ∈ V there exists a (−v) = v−1 ∈ V (simply notational) such
that v + (−v) = (−v) + v = 0

5 1v = v for all v ∈ V (1 being the multiplicative identity in F)

6

{
a(u + v) = au + av ∀a ∈ F, u, v ∈ V

(a+ b)v = av + bv ∀a, b ∈ F, v ∈ V
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Vector Spaces (over a field)

Remark (notation)

The condition that these functions exist can also be called ”closure under
addition (linearity) and closure under scalar multiplication (homogeneity)”{

+ : V × V → V

· : F× V → V

Just for ease, we typically can drop the boldness of vectors based on
context. Sometimes we put an arrow over, sometimes a bar (I dislike
because a bar looks like conjugation). It really just depends on what
notation you choose.

We also drop the · for scalar multiplication typically.

Therefore v = v = v̄ = v⃗

and a · v = av going forward.
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Examples of Vector Spaces

Fn is a vector space (already seen)

F∞ := {(x1, x2, ...) : xj ∈ F for allj ∈ N}

▶ call these sequences, just like Fn but infinite indices
▶ addition, scalar multiplication, identities, etc all defined similarly

For any nonempty set S , define Fs := {f : S → F}

▶ (f + g)(x) = f (x) + g(x)
▶ (λf )(x) = λ(f (x))
▶ 0(x) = 0
▶ (−f )(x) = −f (x)

Remark

Fn and F∞ are of the latter form, for S = {1, 2, ..., n} with n ∈ N ∪ {∞}
as (x1, ...xn) can be see as the output of the function f : {1, ..., n} → F
with xj = f (j)
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More Examples

When F = R, we get a lot of common spaces as vector spaces. Mainly
just need to check closure under addition and scalar multiplication.

▶ V = C [0, 1], continuous functions f : [0, 1] → R
▶ V = C 1[a, b], continuously differentiable functions f : [0, 1] → R
▶ V = Pn(R), polynomials on R of degree at most n

We can do the same for F = C, or really any field as well.

In summary, there are many types of vector spaces, but the easiest to
understand and utilize are finite dimensional vector spaces (will see
soon).
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Some Properties of Vector Spaces



0v = v ∀v ∈ V Proof : ZZ0v = (0 + 0)v =ZZ0v + 0v =⇒ 0 = 0v

a0 = 0 ∀a ∈ F Proof : ZZa0 = a(0 + 0) =ZZa0 + a0 =⇒ a0 = 0

(−1)v = −v ∀v ∈ V Proof : (−1)v = 0 + (−1)v = (−v + v) + (−1)v

= (−v) + ((1 +−1)v) = (−v)

Unique Identity Proof : 0′ = 0′ + 0 = 0

Unique Inverses Proof : w = w + 0 = w + (v + w ′)

= (w + v) + w ′ = 0 + w ′ = w ′∑n
i=1 vi ∈ V , vi ∈ V Proof : By induction... (v1 + ...vn−1)︸ ︷︷ ︸

∈V

+vn ∈ V
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Subspaces

Definition

A subset U ⊆ V is a subspace of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties
of the ambient space V
Therefore, we only need to check:

1 Closure under addition and scalar multiplication

2 0 ∈ U?

3 Additive inverses?

Remark

We actually just have to check the first because the other two are direct
corollaries! Suppose 1) holds, then:

0 = 0 ∗ v ∈ V − v = (−1)v ∈ V
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Subspace (examples)

U1 = {(x1, x2, 0) : x1, x2 ∈ F} is a subspace of F3

U2 = {(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b} is a subspace iff b = 0

C [0, 1] is a subspace of R[0,1]

{f ∈ R[0,1] : f is differentiable and f ′(2) = 0}
{a = (a1, a2, ...) ∈ C∞ : limn→∞ an = 0}

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4
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Sums of Subspaces

Definition

For two subspaces U1,U2 ⊆ V , we denote the sum U1 + U2 as

U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2}

Remark (examples)

U = {(x , 0, 0) : x ∈ F} W = {(0, y , 0) : y ∈ F}

U +W = {(x , y , 0) : x , y ∈ F}

U = {(x , x , y , y) : x , y ∈ F} W = {(x , x , x , y) : x , y ∈ F}

U +W = {(x , x , y , z) : x , y , z ∈ F}
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Direct Sum

Definition

We say a sum of subspace U1 + ...+ Um is a direct sum iff each element
v = u1 + ...+ um, uj ∈ Uj has unique representation
We write this as U1 ⊕ ...⊕ Um

That is to say, if

v = u1 + ...+ um

v = û1 + ...+ ûm

Then uj = ûj for all j = 1, ...,m
Equivalently, by subtracting both equations, we get as necessary and
sufficient condition for a sum of subspaces being a direct sum:

0 = u1 + ...+ um ⇐⇒ u1 = u2 = ... = um = 0
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Vector Spaces Summary

Start with a field: F, somewhere you can add, subtract (inverse of
addition), multiply and divide (inverse of multiplication).

Define the set of ”functions” going into the field. This can be a list
(typical column vector) or as complicated as the space of twice
differentiable functions with Lipschitz gradient.

Vector spaces over a field have certain properties (see slide 12)

Subspaces are the subset analog of vector spaces. We want them to
have the same properties, but this really just means closure under
addition and scalar multiplication

We can add subspaces in the same way we add sets, and by the
closure of the subspaces, the sum is also a subspace

Direct sums are the ”disjoint subset” analog, and in the case of
adding two subspaces, we have direct sum iff U1 ∩ U2 = {0}
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