Linear Algebra Review Session Day 1 (part 1)

Aaron Zoll

Department of Applied Math and Statistics Johns Hopkins University

August 21st 2024

(B)

< 行

• Motivation for Linear Algebra

<ロト <問ト < 目と < 目と

2

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n

э

- 4 回 ト 4 三 ト 4 三 ト

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n
- Vector Spaces over a Field

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n
- Vector Spaces over a Field
- Subspaces

A B + A B +

< 47 ▶

э

2/21

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n
- Vector Spaces over a Field
- Subspaces
- Linear Independence, Span, and Bases

→ ∃ →

э

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n
- Vector Spaces over a Field
- Subspaces
- Linear Independence, Span, and Bases
- Inner Products \rightarrow Norms \rightarrow Metrics Spaces

∃ →

2/21

- Motivation for Linear Algebra
- Fields (\mathbb{F}), Lists (\mathbb{F}^n), Operations in \mathbb{F}^n
- Vector Spaces over a Field
- Subspaces
- Linear Independence, Span, and Bases
- Inner Products \rightarrow Norms \rightarrow Metrics Spaces
- Gram-Schmidt Orthogonalization

• Let's start off with an *easy* question:

э

- ∢ ⊒ →

- (日)

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?

∃ →

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307
- Okay let's try another

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307
- Okay let's try another
- What is 32+43?

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307
- Okay let's try another
- What is 32+43?
- Answer: 75

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307
- Okay let's try another
- What is 32+43?
- Answer: 75
- Why is one not *easy*?

- Let's start off with an *easy* question:
- What is 1853020188851841×328256967394537077627?
- Answer: 608266787713357709119683992618861307
- Okay let's try another
- What is 32+43?
- Answer: 75
- Why is one not *easy*?
- Why are these both equally *easy*?

• $1853020188851841 = 3^{32}$

・ 同下 ・ ヨト ・ ヨト

э

- $1853020188851841 = 3^{32}$
- $328256967394537077627 = 3^{43}$

<日

<</p>

э

- $1853020188851841 = 3^{32}$
- $328256967394537077627 = 3^{43}$
- How can we use these facts to make the first problem *just as easy* as the second?

- $1853020188851841 = 3^{32}$
- $328256967394537077627 = 3^{43}$
- How can we use these facts to make the first problem *just as easy* as the second?
- 1853020188851841 \times 328256967394537077627 = 3^{32} \times 3^{43} = 3^{32+43} = 3^{75}

- $1853020188851841 = 3^{32}$
- $328256967394537077627 = 3^{43}$
- How can we use these facts to make the first problem *just as easy* as the second?
- 1853020188851841 \times 328256967394537077627 = 3^{32} \times 3^{43} = 3^{32+43} = 3^{75}
- This is the essence of math... Math is hard, nearly impossible without the right tools.

- $1853020188851841 = 3^{32}$
- $328256967394537077627 = 3^{43}$
- How can we use these facts to make the first problem *just as easy* as the second?
- 1853020188851841 \times 328256967394537077627 = 3^{32} \times 3^{43} = 3^{32+43} = 3^{75}
- This is the essence of math... Math is hard, nearly impossible without the right tools.

4/21

• Linear Algebra helps use create tools to answer tricky problems!

Why Linear Algebra?

Figure: Dr. Edinah Grang

Figure: Linearization

- 4 回 ト 4 ヨ ト 4 ヨ ト

In order to do linear algebra, we need numbers. Or at the very least, we need stuff to work with-something that looks familiar (to the real numbers) but is general enough to handle more *complex* settings

As we'll see, the *linearity* of *linear* algebra, needs us to be able to add, scale (multiply by a constant), and distribute the two operations. Thus, we need an ambient space to do these calculations.

6/21

Definition

Field: A set \mathbb{F} equipped with two operations $(+, \cdot)$ is a *field* if:

Definition

Field: A set \mathbb{F} equipped with two operations $(+, \cdot)$ is a *field* if:

```
  O  Closure: + : \mathbb{F} \times \mathbb{F} \to \mathbb{F}
```

 $\boldsymbol{\cdot} \, : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$

Definition

Field: A set \mathbb{F} equipped with two operations $(+, \cdot)$ is a *field* if:

Closure: +: F × F → F
·: F × F → F
Associativity: ∀ a, b, c ∈ F

$$\begin{cases}
a + (b + c) = (a + b) + c \\
a \cdot (b \cdot c) = (a \cdot b) \cdot c
\end{cases}$$

Definition

Field: A set $\mathbb F$ equipped with two operations $(+, \boldsymbol{\cdot})$ is a field if:

Closure: +: F × F → F
·: F × F → F
Associativity: ∀ a, b, c ∈ F

$$\begin{cases}
a + (b + c) = (a + b) + c \\
a \cdot (b \cdot c) = (a \cdot b) \cdot c
\end{cases}$$

Commutativity: ∀ a, b ∈ F

$$\begin{cases}
a + b = b + a \\
a \cdot b = b \cdot a
\end{cases}$$

Definition

Field: A set $\mathbb F$ equipped with two operations $(+, \boldsymbol{\cdot})$ is a field if:

Definition

Field: A set \mathbb{F} equipped with two operations $(+, \cdot)$ is a *field* if: **Output** Closure: $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ $\cdot : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$

2 Associativity:
$$\forall a, b, c \in \mathbb{F} \begin{cases} a + (b + c) = (a + b) + c \\ a \cdot (b \cdot c) = (a \cdot b) \cdot c \end{cases}$$

Sommutativity: $\forall a, b \in \mathbb{F} \begin{cases} a+b=b+a \\ a \cdot b = b \cdot a \end{cases}$

Identities: $\exists 0 \neq 1 \in F$ such that $\forall x \in F \begin{cases} x + 0 = 0 + x = x \\ x \cdot 1 = 1 \cdot x = x \end{cases}$

Inverses:

$$\begin{cases}
\forall a \in \mathbb{F}, \exists (-a) \in \mathbb{F} \text{ s.t. } a + (-a) = (-a) + a = 0 \\
\forall 0 \neq b \in \mathbb{F}, \exists (b^{-1}) \in \mathbb{F} \text{ s.t. } b \cdot (b^{-1}) = (b^{-1}) \cdot b = 1
\end{cases}$$

Definition

Field: A set \mathbb{F} equipped with two operations $(+, \cdot)$ is a *field* if: **O** Closure: $+ : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ • : $\mathbb{F} \times \mathbb{F} \to \mathbb{F}$ • Associativity: $\forall a, b, c \in \mathbb{F}$ $\begin{cases}
a + (b + c) = (a + b) + c \\
a \cdot (b \cdot c) = (a \cdot b) \cdot c
\end{cases}$ • Commutativity: $\forall a, b \in \mathbb{F} \begin{cases} a+b=b+a \\ a \cdot b = b \cdot a \end{cases}$ Identities: $\exists 0 \neq 1 \in F$ such that $\forall x \in F \begin{cases} x + 0 = 0 + x = x \\ x \cdot 1 = 1 \cdot x = x \end{cases}$ Inverses: $\begin{cases} \forall a \in \mathbb{F}, \exists (-a) \in \mathbb{F} \text{ s.t. } a + (-a) = (-a) + a = 0 \\ \forall 0 \neq b \in \mathbb{F}, \exists (b^{-1}) \in \mathbb{F} \text{ s.t. } b \cdot (b^{-1}) = (b^{-1}) \cdot b = 1 \end{cases}$

• Distributivity: $\forall a, b, c \in F$, $a \cdot (b + c) = a \cdot b + a \cdot c$

Aaron Zoll (Johns Hopkins University)

• The real numbers: $\mathbb{R} = \{0, -2, 1, \pi, 2.718, 43, 3^{75}, ...\}$ (our base example)

イロト イボト イヨト イヨト

э

- The real numbers: $\mathbb{R} = \{0, -2, 1, \pi, 2.718, 43, 3^{75}, ...\}$ (our base example)
- The complex numbers: C = {a + bi : a, b ∈ R} =: R ⊕ iR (inherits all the properties from the reals)

- The real numbers: $\mathbb{R} = \{0, -2, 1, \pi, 2.718, 43, 3^{75}, ...\}$ (our base example)
- The complex numbers: C = {a + bi : a, b ∈ R} =: R ⊕ iR (inherits all the properties from the reals)
- The rationals: $\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\}$ (subset of the reals)

く 白 ト く ヨ ト く ヨ ト

- The real numbers: $\mathbb{R} = \{0, -2, 1, \pi, 2.718, 43, 3^{75}, ...\}$ (our base example)
- The complex numbers: C = {a + bi : a, b ∈ R} =: R ⊕ iR (inherits all the properties from the reals)
- The rationals: $\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \}$ (subset of the reals)
- Finite fields: 𝔽_p = {0,1,2,...p − 1} for some prime p. Also known as ℤ/nℤ, the modulus group. (inherits all properties but multiplicative inverses from the reals, which comes from p being prime)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The real numbers: $\mathbb{R} = \{0, -2, 1, \pi, 2.718, 43, 3^{75}, ...\}$ (our base example)
- The complex numbers: C = {a + bi : a, b ∈ R} =: R ⊕ iR (inherits all the properties from the reals)
- The rationals: $\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \}$ (subset of the reals)
- Finite fields: 𝔽_p = {0,1,2,...p − 1} for some prime p. Also known as ℤ/nℤ, the modulus group. (inherits all properties but multiplicative inverses from the reals, which comes from p being prime)
- What if we want to handle multiple values at once? Say we want to keep track of position with an x, y, and z coordinate.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

8/21
Lists

Definition

List: For a fixed natural number $n \in \mathbb{N}$, define an *n*-dimensional list over field \mathbb{F} to be

$$\mathbb{F}^n = \{ (x_1, x_2, ..., x_n) : x_j \in \mathbb{F} \mid 1 \le j \le 1 \}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Lists

Definition

List: For a fixed natural number $n \in \mathbb{N}$, define an *n*-dimensional list over field \mathbb{F} to be

$$\mathbb{F}^n = \{ (x_1, x_2, ..., x_n) : x_j \in \mathbb{F} \mid 1 \le j \le 1 \}$$

Remark

We call x_j then j^{th} -coordinate

<日

<</p>

э

9/21

Definition

We can definite the following operations that "naturally" extend from the underlying Field $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]_{{\rm{c}}}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)} \right)$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Definition

We can definite the following operations that "naturally" extend from the underlying Field

- Addition: $(+: \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n)$ is defined component-wise:
 - $(x_1,...,x_n) + (y_1,...,y_n) := (x_1 + y_1,...,x_n + y_n)$

<日

<</p>

Definition

We can definite the following operations that "naturally" extend from the underlying Field

- Addition: $(+: \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n)$ is defined component-wise: $(x_1, ..., x_n) + (y_1, ..., y_n) := (x_1 + y_1, ..., x_n + y_n)$
- Scalar multiplication: $(\cdot : \mathbb{F} \times \mathbb{F}^n \to \mathbb{F}^n)$ is component wise too: $\lambda_{\in \mathbb{F}} \cdot \underbrace{(x_1, ..., x_n)}_{\in \mathbb{F}^n} := (\lambda x_1, ..., \lambda x_n)$

く 白 ト く ヨ ト く ヨ ト

Definition

We can definite the following operations that "naturally" extend from the underlying Field

- Addition: $(+: \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n)$ is defined component-wise: $(x_1, ..., x_n) + (y_1, ..., y_n) := (x_1 + y_1, ..., x_n + y_n)$
- Scalar multiplication: $(\cdot : \mathbb{F} \times \mathbb{F}^n \to \mathbb{F}^n)$ is component wise too: $\lambda_{\in \mathbb{F}} \cdot \underbrace{(x_1, ..., x_n)}_{\in \mathbb{F}^n} := (\lambda x_1, ..., \lambda x_n)$
- (additive) Identity: needs to hold that 0 + x = x + 0 = x, so we define 0 = (0, 0, ..., 0)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

10/21

Definition

We can definite the following operations that "naturally" extend from the underlying Field

- Addition: $(+: \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n)$ is defined component-wise: $(x_1, ..., x_n) + (y_1, ..., y_n) := (x_1 + y_1, ..., x_n + y_n)$
- Scalar multiplication: $(\cdot : \mathbb{F} \times \mathbb{F}^n \to \mathbb{F}^n)$ is component wise too: $\lambda_{\in \mathbb{F}} \cdot \underbrace{(x_1, ..., x_n)}_{\in \mathbb{F}^n} := (\lambda x_1, ..., \lambda x_n)$
- (additive) Identity: needs to hold that 0 + x = x + 0 = x, so we define 0 = (0, 0, ..., 0)
- (additive) Inverse: need for $\mathbf{x} + -\mathbf{x} = \mathbf{0}$, so we define $-\mathbf{x} = (-x_1, ..., -x_n)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark

We immediately get associativity, commutativity, and distributivity (of scalar multiplication) from the properties of the underlying field. We also get uniques of inverses, identities, and the properties that $\mathbf{x} = 1 \cdot \mathbf{x}$ and $-\mathbf{x} = (-1) \cdot \mathbf{x}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Remark

We immediately get associativity, commutativity, and distributivity (of scalar multiplication) from the properties of the underlying field. We also get uniques of inverses, identities, and the properties that $\mathbf{x} = 1 \cdot \mathbf{x}$ and $-\mathbf{x} = (-1) \cdot \mathbf{x}$

Proof.

$$\mathbf{x} + \mathbf{y} = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n) = (y_1 + x_1, ..., y_n + x_n) = (y_1, ..., y_n) + (x_1, ..., x_n) = \mathbf{y} + \mathbf{x}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A Vector Space over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

such that the following holds

Definition

A Vector Space over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

12/21

such that the following holds

 $u + v = v + u \text{ for all } u, v \in V$

Definition

A Vector Space over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

・ 何 ト ・ ヨ ト ・ ヨ ト

such that the following holds

$$u + v = v + u \text{ for all } u, v \in V$$

3
$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

Definition

A Vector Space over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

such that the following holds

$$u + v = v + u \text{ for all } u, v \in V$$

3
$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

So There exists $0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$

Definition

A **Vector Space** over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

such that the following holds

$$u + v = v + u \text{ for all } u, v \in V$$

3
$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

3 There exists $0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$

• For all $v \in V$ there exists a $(-v) = v^{-1} \in V$ (simply notational) such that v + (-v) = (-v) + v = 0

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

A Vector Space over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

such that the following holds

$$u + v = v + u \text{ for all } u, v \in V$$

3
$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

3 There exists $0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$

- For all $v \in V$ there exists a $(-v) = v^{-1} \in V$ (simply notational) such that v + (-v) = (-v) + v = 0
- **1** v = v for all $v \in V$ (1 being the multiplicative identity in \mathbb{F})

< □ > < 同 > < 回 > < 回 > < 回 >

Definition

A **Vector Space** over a field \mathbb{F} is a set V along with $\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$

such that the following holds

$$u + v = v + u \text{ for all } u, v \in V$$

2
$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

Solution There exists $0 \in V$ such that 0 + v = v + 0 = v for all $v \in V$

- For all $v \in V$ there exists a $(-v) = v^{-1} \in V$ (simply notational) such that v + (-v) = (-v) + v = 0
- **1** v = v for all $v \in V$ (1 being the multiplicative identity in \mathbb{F})

$$\begin{cases} a(u+v) = au + av \quad \forall a \in \mathbb{F}, \ u, v \in V \\ (a+b)v = av + bv \quad \forall a, b \in \mathbb{F}, \ v \in V \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Remark (notation)

The condition that these functions exist can also be called "closure under addition (linearity) and closure under scalar multiplication (homogeneity)"

$$egin{cases} +:V imes V o V\ lacksquare :\mathbb{F} imes V o V \end{pmatrix}$$

イロト イヨト イヨト イヨト

Remark (notation)

The condition that these functions exist can also be called "closure under addition (linearity) and closure under scalar multiplication (homogeneity)"

$$\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$$

 Just for ease, we typically can drop the boldness of vectors based on context. Sometimes we put an arrow over, sometimes a bar (I dislike because a bar looks like conjugation). It really just depends on what notation you choose.

(日)

Remark (notation)

The condition that these functions exist can also be called "closure under addition (linearity) and closure under scalar multiplication (homogeneity)"

$$\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$$

- Just for ease, we typically can drop the boldness of vectors based on context. Sometimes we put an arrow over, sometimes a bar (I dislike because a bar looks like conjugation). It really just depends on what notation you choose.
- We also drop the for scalar multiplication typically.

(日)

Remark (notation)

The condition that these functions exist can also be called "closure under addition (linearity) and closure under scalar multiplication (homogeneity)"

$$\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$$

- Just for ease, we typically can drop the boldness of vectors based on context. Sometimes we put an arrow over, sometimes a bar (I dislike because a bar looks like conjugation). It really just depends on what notation you choose.
- We also drop the

 for scalar multiplication typically.
- Therefore $v = \mathbf{v} = \overline{v} = \overline{v}$

(日)

Remark (notation)

The condition that these functions exist can also be called "closure under addition (linearity) and closure under scalar multiplication (homogeneity)"

$$\begin{cases} +: V \times V \to V \\ \cdot: \mathbb{F} \times V \to V \end{cases}$$

- Just for ease, we typically can drop the boldness of vectors based on context. Sometimes we put an arrow over, sometimes a bar (I dislike because a bar looks like conjugation). It really just depends on what notation you choose.
- We also drop the for scalar multiplication typically.
- Therefore $v = \mathbf{v} = \bar{v} = \vec{v}$
- and $a \cdot v = av$ going forward.

ヘロト 人間ト 人間ト 人間ト

э

• \mathbb{F}^n is a vector space (already seen)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

- \mathbb{F}^n is a vector space (already seen)
- $\mathbb{F}^{\infty} := \{ (x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N} \}$

イロト 不得 トイヨト イヨト

3

- \mathbb{F}^n is a vector space (already seen)
- $\mathbb{F}^{\infty} := \{ (x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N} \}$
 - ▶ call these sequences, just like \mathbb{F}^n but infinite indices

く 何 ト く ヨ ト く ヨ ト

э

- \mathbb{F}^n is a vector space (already seen)
- $\mathbb{F}^{\infty} := \{ (x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N} \}$
 - ▶ call these sequences, just like \mathbb{F}^n but infinite indices
 - > addition, scalar multiplication, identities, etc all defined similarly

• • = • • = •

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{ (x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N} \}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- > addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{(x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N}\}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

•
$$(f+g)(x) = f(x) + g(x)$$

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{(x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N}\}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(\lambda f)(x) = \lambda(f(x))$$

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{(x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N}\}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- > addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(\lambda f)(x) = \lambda(f(x))$$

$$\bullet \quad 0(x) = 0$$

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{(x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N}\}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- > addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(\lambda f)(x) = \lambda(f(x))$$

•
$$0(x) = 0$$

$$(-f)(x) = -f(x)$$

< 回 > < 回 > < 回 >

14 / 21

• \mathbb{F}^n is a vector space (already seen)

•
$$\mathbb{F}^{\infty} := \{(x_1, x_2, ...) : x_j \in \mathbb{F} \text{ for all } j \in \mathbb{N}\}$$

- ▶ call these sequences, just like \mathbb{F}^n but infinite indices
- addition, scalar multiplication, identities, etc all defined similarly
- For any nonempty set S, define $\mathbb{F}^s := \{f : S \to \mathbb{F}\}$

•
$$(f+g)(x) = f(x) + g(x)$$

•
$$(\lambda f)(x) = \lambda(f(x))$$

•
$$0(x) = 0$$

$$(-f)(x) = -f(x)$$

Remark

 \mathbb{F}^n and \mathbb{F}^{∞} are of the latter form, for $S = \{1, 2, ..., n\}$ with $n \in \mathbb{N} \cup \{\infty\}$ as $(x_1, ..., x_n)$ can be see as the output of the function $f : \{1, ..., n\} \to \mathbb{F}$ with $x_j = f(j)$

 When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly just need to check closure under addition and scalar multiplication.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

 When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly just need to check closure under addition and scalar multiplication.

• V = C[0,1], continuous functions $f : [0,1] \rightarrow \mathbb{R}$

A B A A B A

- When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly just need to check closure under addition and scalar multiplication.
 - V = C[0,1], continuous functions $f : [0,1] \rightarrow \mathbb{R}$
 - ▶ $V = C^1[a, b]$, continuously differentiable functions $f : [0, 1] \to \mathbb{R}$

• • = • • = •

- When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly just need to check closure under addition and scalar multiplication.
 - V = C[0,1], continuous functions $f : [0,1] \rightarrow \mathbb{R}$
 - ▶ $V = C^1[a, b]$, continuously differentiable functions $f : [0, 1] \to \mathbb{R}$
 - $V = \mathcal{P}_n(\mathbb{R})$, polynomials on \mathbb{R} of degree at most n

・ 同 ト ・ ヨ ト ・ ヨ ト …

- When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly
 just need to check closure under addition and scalar multiplication.
 - V = C[0,1], continuous functions $f : [0,1] \rightarrow \mathbb{R}$
 - ▶ $V = C^1[a, b]$, continuously differentiable functions $f : [0, 1] \to \mathbb{R}$
 - $V = \mathcal{P}_n(\mathbb{R})$, polynomials on \mathbb{R} of degree at most n
- We can do the same for $\mathbb{F} = \mathbb{C}$, or really any field as well.

b) a) The bound of the bound
More Examples

- When 𝑘 = 𝑘, we get a lot of common spaces as vector spaces. Mainly just need to check closure under addition and scalar multiplication.
 - V = C[0,1], continuous functions $f : [0,1] \rightarrow \mathbb{R}$
 - ▶ $V = C^1[a, b]$, continuously differentiable functions $f : [0, 1] \rightarrow \mathbb{R}$
 - $V = \mathcal{P}_n(\mathbb{R})$, polynomials on \mathbb{R} of degree at most n
- We can do the same for $\mathbb{F} = \mathbb{C}$, or really any field as well.
- In summary, there are many types of vector spaces, but the easiest to understand and utilize are *finite dimensional* vector spaces (will see soon).

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Some Properties of Vector Spaces

$$\begin{cases} 0v = v \ \forall v \in V & Proof: \ \forall v = (0+0)v = \forall v + 0v \Longrightarrow 0 = 0v \\ a0 = 0 \ \forall a \in \mathbb{F} & Proof: \ \exists Q = a(0+0) = \exists Q + a0 \Longrightarrow a0 = 0 \\ (-1)v = -v \ \forall v \in V & Proof: \ (-1)v = 0 + (-1)v = (-v+v) + (-1)v \\ = (-v) + ((1+-1)v) = (-v) \\ \text{Unique Identity} & Proof: \ 0' = 0' + 0 = 0 \\ \text{Unique Inverses} & Proof: \ w = w + 0 = w + (v + w') \\ = (w + v) + w' = 0 + w' = w' \\ \sum_{i=1}^{n} v_i \in V, v_i \in V & Proof: \ \text{By induction...} \underbrace{(v_1 + \dots v_{n-1})}_{\in V} + v_n \in V \end{cases}$$

・ロト ・四ト ・ヨト ・ヨト

э

16/21

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

イロト イボト イヨト イヨト

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties of the ambient space VTherefore, we only need to check:

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties of the ambient space VTherefore, we only need to check:

Oscillation Oscillation Oscillation Oscillation

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties of the ambient space V Therefore, we only need to check:

- **Ostimum** Closure under addition and scalar multiplication
- **2** $0 \in U$?

3

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties of the ambient space V Therefore, we only need to check:

- Closure under addition and scalar multiplication
- **2** $0 \in U$?
- 3 Additive inverses?

17/21

Definition

A subset $U \subseteq V$ is a **subspace** of V is U is also a vector space

Remark

Properties 1), 2), 5), 6) will always hold simply by inheriting the properties of the ambient space V

Therefore, we only need to check:

Ostimum Closure under addition and scalar multiplication

2
$$0 \in U$$
?

3 Additive inverses?

Remark

We actually just have to check the first because the other two are direct corollaries! Suppose 1) holds, then:

$$0=0*v\in V\quad -v=(-1)v\in V$$

•
$$U_1 = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$$
 is a subspace of \mathbb{F}^3

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4

イロト イポト イヨト イヨト

- $U_1 = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3
- $U_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4

・ 同 ト ・ ヨ ト ・ ヨ ト

- $U_1 = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3
- $U_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- C[0,1] is a subspace of $\mathbb{R}^{[0,1]}$

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4

・ 同 ト ・ ヨ ト ・ ヨ ト

- $U_1 = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3
- $U_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- C[0,1] is a subspace of $\mathbb{R}^{[0,1]}$
- $\{f \in \mathbb{R}^{[0,1]} : f \text{ is differentiable and } f'(2) = 0\}$

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4

く 白 ト く ヨ ト く ヨ ト

- $U_1 = \{(x_1, x_2, 0) : x_1, x_2 \in \mathbb{F}\}$ is a subspace of \mathbb{F}^3
- $U_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- C[0,1] is a subspace of $\mathbb{R}^{[0,1]}$
- $\{f \in \mathbb{R}^{[0,1]} : f \text{ is differentiable and } f'(2) = 0\}$
- $\{a = (a_1, a_2, ...) \in \mathbb{C}^\infty : \lim_{n \to \infty} a_n = 0\}$

Figure: https://www.youtube.com/watch?v=0gHg5X6ng4

く 白 ト く ヨ ト く ヨ ト

Definition

For two subspaces $U_1, U_2 \subseteq V$, we denote the sum $U_1 + U_2$ as

$$U_1 + U_2 = \{u_1 + u_2 : u_1 \in U_1, \ u_2 \in U_2\}$$

Definition

For two subspaces $U_1, U_2 \subseteq V$, we denote the sum $U_1 + U_2$ as

$$U_1 + U_2 = \{u_1 + u_2 : u_1 \in U_1, \ u_2 \in U_2\}$$

Remark (examples)

・ロト ・四ト ・ヨト ・ヨト

Definition

For two subspaces $U_1, U_2 \subseteq V$, we denote the sum $U_1 + U_2$ as

$$U_1 + U_2 = \{u_1 + u_2 : u_1 \in U_1, \ u_2 \in U_2\}$$

Remark (examples)

•
$$U = \{(x, 0, 0) : x \in \mathbb{F}\}$$
 $W = \{(0, y, 0) : y \in \mathbb{F}\}$

$$U+W=\{(x,y,0):x,y\in\mathbb{F}\}$$

・ロト ・四ト ・ヨト ・ヨト

Definition

For two subspaces $U_1, U_2 \subseteq V$, we denote the sum $U_1 + U_2$ as

$$U_1 + U_2 = \{u_1 + u_2 : u_1 \in U_1, \ u_2 \in U_2\}$$

Remark (examples)

• $U = \{(x, 0, 0) : x \in \mathbb{F}\}$ $W = \{(0, y, 0) : y \in \mathbb{F}\}$

$$U+W=\{(x,y,0):x,y\in\mathbb{F}\}$$

• $U = \{(x, x, y, y) : x, y \in \mathbb{F}\}$ $W = \{(x, x, x, y) : x, y \in \mathbb{F}\}$ $U + W = \{(x, x, y, z) : x, y, z \in \mathbb{F}\}$

= nar

Direct Sum

Definition

We say a sum of subspace $U_1 + ... + U_m$ is a **direct sum** iff each element $v = u_1 + ... + u_m$, $u_j \in U_j$ has *unique* representation We write this as $U_1 \oplus ... \oplus U_m$

That is to say, if

$$v = u_1 + \dots + u_m$$
$$v = \hat{u}_1 + \dots + \hat{u}_m$$

Then $u_j = \hat{u}_j$ for all j = 1, ..., m

Equivalently, by subtracting both equations, we get as necessary and sufficient condition for a sum of subspaces being a **direct sum**:

$$0 = u_1 + \ldots + u_m \iff u_1 = u_2 = \ldots = u_m = 0$$

<日

<</p>

• Start with a field: 𝔽, somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).

∃ ► < ∃ ►</p>

- Start with a field: 𝔽, somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).
- Define the set of "functions" going *into* the field. This can be a list (typical column vector) or as complicated as the space of twice differentiable functions with Lipschitz gradient.

1 E N 1 E N

- Start with a field: 𝔽, somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).
- Define the set of "functions" going *into* the field. This can be a list (typical column vector) or as complicated as the space of twice differentiable functions with Lipschitz gradient.
- Vector spaces over a field have certain properties (see slide 12)

4 1 1 4 1 1 1

- Start with a field: 𝔽, somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).
- Define the set of "functions" going *into* the field. This can be a list (typical column vector) or as complicated as the space of twice differentiable functions with Lipschitz gradient.
- Vector spaces over a field have certain properties (see slide 12)
- Subspaces are the subset analog of vector spaces. We want them to have the same properties, but this really just means closure under addition and scalar multiplication

A B M A B M

- Start with a field: 𝔽, somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).
- Define the set of "functions" going *into* the field. This can be a list (typical column vector) or as complicated as the space of twice differentiable functions with Lipschitz gradient.
- Vector spaces over a field have certain properties (see slide 12)
- Subspaces are the subset analog of vector spaces. We want them to have the same properties, but this really just means closure under addition and scalar multiplication

21 / 21

• We can add subspaces in the same way we add sets, and by the closure of the subspaces, the sum is also a subspace

- Start with a field: \mathbb{F} , somewhere you can add, subtract (inverse of addition), multiply and divide (inverse of multiplication).
- Define the set of "functions" going into the field. This can be a list (typical column vector) or as complicated as the space of twice differentiable functions with Lipschitz gradient.
- Vector spaces over a field have certain properties (see slide 12)
- Subspaces are the subset analog of vector spaces. We want them to have the same properties, but this really just means closure under addition and scalar multiplication
- We can add subspaces in the same way we add sets, and by the closure of the subspaces, the sum is also a subspace
- Direct sums are the "disjoint subset" analog, and in the case of adding two subspaces, we have direct sum iff $U_1 \cap U_2 = \{0\}$

< ロ > < 同 > < 回 > < 回 > < 回 > <