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Span and Linear Independence

Definition

Given a (finite) set of vectors {v1, ..., vm}, a linear combination is of the
form

a1v1 + ...+ amvm =
m∑
i=1

aivi

for ai ∈ F Thus, a linear combination is a function f : V × ...× V︸ ︷︷ ︸
m times

→ V

that is linear in each argument (we will see more of this later...)

Remark (https://www.desmos.com/3d/yzmyc67kz4)

We can add further conditions on the a′i s if desired

If we impose
∑m

i=1 ai = 1, then we can this an affine combination

If we impose that each ai ≥ 0, this is a conic combination

If both ai ≥ 0 and
∑m

i=1 ai = 1, then this is called a convex
combination
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Span

Definition

The span of a subset S ⊆ V is all the collected of (finite) linear
combinations:

span(S) =

{
k∑

i=1

aivi |k ∈ N, vi ∈ S , ai ∈ F

}

We say S spans U ⊆ V if every element u ∈ U can be written as a linear
combination in S

Remark

We can think about the span(S) as the smallest subspace that contains S.
Similarly, U1 + U2is the smallest subspace containing U1 and U2

Example:

{(1, 0, 0, ..., 0)︸ ︷︷ ︸
e1

, (0, 1, 0, ..., 0)︸ ︷︷ ︸
e2

, (0, 0, 1, ..., 0)︸ ︷︷ ︸
e3

, ..., (0, 0, 0, ..., 1)︸ ︷︷ ︸
en

} spans Fn
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Span

Figure: Medium
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Remark on Finite-ness

Definition

We saw V is finite dimensional if there exist a finite set S ⊆ V (here this
is just a subset, not a subspace) where

span(S) = V

Remark

Here are some examples:

Rn,Cn,Fn are all finite dimensional... just take S = {e1, ..., en}
P(R) is not finite dimensional, because any finite list of polynomials
(say up to degree k) will not have xk+1 in their span

▶ We can then say that xk+1 is linearly independent (cannot be written
as a linear combination) from the elements 1, x , x2, ..., xk
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Linear Independence
On the last slide, we said that the ”vector” xk+1 is linearly independent
from {1, x , x2, ..., xk} because it cannot be written as a linear combination
of them. He we give the formal definition:

Definition

A set of vectors {v1, ..., vm} is called linearly independent if

a1v1 + ...+ amvm = 0⇐⇒ ai = 0 ∀i

1 Clearly one direction always holds, the other is the ”uniqueness”
aspect similar to what we saw with direct sums

2 Equivalently, if Ui := span({vi}) = {avi : a ∈ F} =: Fvi then
U1 ⊕ ...⊕ Um is a direct sum

3 In other words, for some i = 1, ..,m:

vi /∈ span({v1, ..., vm}\vi )
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Linear Independence

1.

(⇐=)If each ai = 0, then
∑m

i=1 aivi =
∑m

i=1 0vi = 0
(Uniqueness) Suppose the linear independence property holds. Then if we
have two representations of v ∈ V

v =
m∑
i=1

aivi =
m∑
i=1

bivi

Then we get
m∑
i=1

(ai − bi )vi = 0 =⇒ ai − bi = 0 ∀i

So ai = bi and the ”representation” is the same. There is a unique way to
write v as a linear combination of the v ′i s
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Linear Independence

2.

Letting Ui = span({vi}), then

U1 ⊕ ...⊕ Um is a direct sum

iff 0 = u1 + ...+ um, ui ∈ Ui ⇐⇒ ui = 0 ∀i
iff 0 = a1v1 + ...+ amvm, ai ∈ F⇐⇒ ai = 0 ∀i
iff {v1, ..., vm} is linearly independent
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Linear Independence

3.

We prove this ”two way contrapositive.” The following are equivalent:

{v1, ..., vm} is not linearly independent (hence, linearly dependent)

There exists, a1, ..., am ∈ F not all zero, where a1v1 + ...+ amvm = 0
iff

aivi = −(a1v1 + ...+ ai−1vi−1 + ai+1vi+1 + ...+ amvm), with ai ̸= 0

vi =
−a1
ai

v1 + ...+
−ai−1

ai
vi−1 +

−ai+1

ai
vi+1 + ...+ −am

ai
vm, with ai ̸= 0

vi = b1v1 + ...+ bi−1vi−1 + bi+1vi+1...+ bmvm for bj ∈ F
vi ∈ span({v1, ..., vm}\vi )

Remark

Note that if {v1, ..., vm} is linearly dependent, we can remove one of the
vectors (the one that can be written in the span of the other) to get a
strictly smaller list with the same span.
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Examples of Linearly Independent Sets

Here are some sets that are linearly independent:

{v : 0 ̸= v ∈ V }, any set with a single non-zero vector

{(1, 0, 0, 0), (0, 1, 0, 0)}
{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
{(a, b), (c , d) : ad − bc ̸= 0}

Here are some sets that are linearly dependent:

{v , 2v : 0 ̸= v ∈ V }, any set with a single non-zero vector

{0} ∪ S for any subset S ⊆ V

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}
{(a, b), (c , d) : ad − bc = 0}
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Lengths of L.I. lists and Spanning Lists

Proposition

The length of any linear independent list is less than or equal to the length
of and spanning list.

Proof.

Suppose u1, ...um is L.I. and w1, ., ..,wn spans V. We want to show m ≤ n

We then have u1,w1, ...,wn spanning v, but now is definitely linearly dependent as
u1 ∈ V = span({w1, ...,wn}). So to make it linearly independent but having the same
span, we remove some w ′s. WLOG say we remove wn and wn−1

Now add u2 to have u1, u2,w1, ...wn−2. Repeat removing w ′s (not need to remove any
u′s because they were L.I.

Repeat until all the u′s are added. This took exactly m steps, and at least one w was
removed each time. So if there are no w ′s left over, then m = n. If there are left over w ′s
needs to span V then m < n

However, note that we will never have removed all the w ′s before m steps because then
that implies that u1, .., uk spans V for some k < m, and so that contradicts the L.I. aspect
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Bases

Definition

A basis of vector space V is a set of vectors that is linearly independence
and spans V

Remark

Equivalently, this means that every vector v ∈ V can be written uniquely
as a linearly combination of v :

∀v ∈ V ∃! a1, ..., am ∈ F s.t. v = a1v1 + ...+ amvm

Spanning gives the existence
Linear independence gives the uniqueness
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Examples of Bases

Examples of some bases of vectors spaces/subspaces

{(1, 0, 0, ..., 0)︸ ︷︷ ︸
e1

, (0, 1, 0, ..., 0)︸ ︷︷ ︸
e2

, (0, 0, 1, ..., 0)︸ ︷︷ ︸
e3

, ..., (0, 0, 0, ..., 1)︸ ︷︷ ︸
en

} is called

the standard basis of Fn

{(2, 4), (3, 5)} is a basis of C2. Note that this has the same length as
the previous example. This is not a coincidence

{1, x , x2, ..., xn} is the standard basis of Pn(F)
{(1, 2, 3), (4, 1, 7)} is not a basis as it does not span R3

{(1, 2), (4, 7), (−3, 1)} is not a basis as it is not linearly independent

{(1, 1, 0), (0, 0, 1)} is a basis of {(x , x , y) ∈ R3}
{(−1, 1, 0), (−1, 0, 1)} is a basis of {(x , y , z) ∈ R3 : x + y + z = 0}

▶ If x + y + z = 0, then x = −y − z
▶ so (x , y , z) = (−y − z , y , z) = (−y , y , 0) + (−z , 0, z)
▶ = y(−1, 1, 0) + z(−1, 0, 1) for any y , z ∈ R
▶ Technically this just shows the span, but L.I. follows easily
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Dimension

Definition

The dimension of a vector space (or subspace) is the length of any basis
Essentially, how many parameters do you need to specify a point in space?

Remark

The length of any two bases are equal:

Suppose B1 and B2 are bases of V

Then B1 and B2 both span and are L.I. but by the previous
proposition

|B1| ≤ |B2| since any spanning list is larger or equal to any L.I. list

|B2| ≤ |B1| for the same reasons

therefore |B1| = |B2|
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Dimension of Sums of Subspaces

Theorem (1)

Given a linearly independent set {v1, ..., vk}, we can extend this to a basis
{v1, ..., vn} of V

Theorem (2)

Suppose V is finite dimensional, U ⊆ V , then there exists W ⊂ V s.t.
V = U ⊕W

Theorem (3)

For two subspaces U1,U2 ⊆ V

dimU1 + U2 = dimU1 + dimU2 − dimU1 ∩ U2

Corollary

dimU1 ⊕ U2 = dimU1 + dimU2
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Coordinates

Given a basis B = {v1, ..., vm} of vector space V , we can represent any
vector v uniquely as

v = a1v1 + ...+ anvn

Definition

We call these scalars coordinates, respect to the basis B, and write

[v ]B =


a1

a2
...

an


B

There
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Coordinates

The vector is whatever the vector is in the Vector Space. However, we can
”name it” with a Basis. But just like different languages sound different,
diffing Basis names will look different.

example.

For bases B1 = {(1, 0), (0, 1)} and B2 = {(2, 3), (3,−1)} in R2, we can
write the vector v := (5, 2) as

v =

5
2


B1

=

1
1


B2

Why do we care? Sometimes a vector ”looks nicer” or is ”easier to work
with” in a new basis. We compromise complexity of the basis for
simplicity of the vectors we need to work with.
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Summary of the Structure of Vector Spaces

Vector spaces allow for addition and scalar multiplication

Often there are uncountably many vectors, but we can represent them
uniquely from a very small set

If this small set can uniquely︸ ︷︷ ︸
Linear Independence

represent︸ ︷︷ ︸
Span

every vector, we call it a basis, with the representation being the
coordinates

Different bases have the same length–dimension. Why?

Because changing our perspective doesn’t change the amount of
parameters or information is needed to locate something
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What is a vector?

Figure: Despicable Me
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What is a vector?

Figure: Medium
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Metrics

Definition

A metric on a vector space V is a ”distance” between vectors given by
function

d(u, v) : V × V → [0,∞)

such that the following hold:

1 d(v , v) = 0 for all v ∈ V and if u ̸= v , d(u, v) > 0

2 d(u, v) = d(v , u)

3 d(u,w) ≤ d(u, v) + d(v ,w) (triangle inequality)
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Visual Examples of Metrics

Figure: Medium
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Examples of metrics

d2(u, v) =
√
(u1 − v1)2 + ...+ (un − vn)2

d1(u, v) = |u1 − v1|+ ...+ |un − vn|
dp(u, v) = (

∑n
i=1 |un − vn|p)1/p for p ≥ 1

d∞ = maxi |ui − vi | = limp→∞ dp(u, v)

d̂(u, v) =

{
0 if u = v

1 o.w .

dH(u, v) = |{j : uj ̸= vj}|, number of components not equal (only for
finite dimensional spaces)
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Norms

Definition

A norm on a vector space V is a ”length” of v ∈ V given by function

∥ · ∥V → [0,∞)

satisfying the following:

1 ∥v∥ ≥ 0 and ∥v∥ = 0 iff v = 0

2 ∥λv∥ = |λ|∥v∥ for any λ ∈ F
3 ∥u + v∥ ≤ ∥u∥+ ∥v∥

Looks similar to a metric... also not a coincidence!
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Examples of Norms

Here are some examples:

∥v∥2 =
√
v21 + ...+ v2n

∥v∥1 = |v1|+ ...+ |vn|
∥v∥p = (|v1|p + ...+ |vn|p)1/p

∥v∥∞ = maxi ∥xi∥

For f ∈ C [0, 1], ∥f ∥p =
(∫ 1

0 |f (x)|
pdx

)1/p
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Inducing a metric from a norm

Note: given any norm ∥ · ∥ : V → [0,∞), we can induce a metric
d(u, v) : V × V → [0,∞) by defining

d(u, v) := ∥u − v∥

Proof.

1 d(u, v) = 0⇐⇒ ∥u − v∥ = 0⇐⇒ u − v = 0⇐⇒ u = v

2 d(u, v) = ∥u−v∥ = ∥(−1)(v−u)∥ = |−1|∥v−u∥ = ∥v−u∥ = d(v , u)

3 d(u,w) = ∥u − w∥ = ∥(u − v)− (w − v)∥ ≤ ∥u − v∥+ ∥v − w∥ =
d(u, v) + d(v ,w)

Therefore, any norm defines a metric, but not every metric is defined from
a norm!
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Inner Product

Definition

An inner product is a measure of ”angles” between vectors given a
function

⟨·, ·⟩ : V × V → F

satisfying the following:

1 ⟨v , v⟩ ≥ 0 for all v ∈ V and ⟨v , v⟩ = 0⇐⇒ v = 0

2 ⟨u + v ,w⟩ = ⟨u,w⟩+ ⟨v ,w⟩
3 ⟨λv ,w⟩ = λ⟨v ,w⟩
4 ⟨v ,w⟩ = ⟨w , v⟩ when F = C

Remark

We also get that ⟨v , u + w⟩ = ⟨v , u⟩+ ⟨v ,w⟩ since

⟨v , u + w⟩ = ⟨u + w , v⟩ = ⟨u, v⟩+ ⟨w , v⟩ = ⟨v , u⟩+ ⟨v ,w⟩ = ⟨v , u⟩+ ⟨v ,w⟩
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Examples

Inner products are way more restrictive...

⟨u, v⟩ =
∑n

i=1 uivi if F = R

⟨u, v⟩ =
∑n

i=1 ui v̄i if F = C
⟨f , g⟩ =

∫ 1
0 f (x)ḡ(x)dx for f , g : [0, 1]→ C

There really aren’t too many more...

Remark

Similarly we can induce a norm from an inner product.
Given ⟨·, ·⟩ : V × V → F, define

∥v∥ :=
√
⟨v , v⟩

Then we have

1 ∥v∥ ≥ 0 and ∥v∥ = 0 iff v = 0

2 ∥λv∥ =
√
|λ|2∥v∥ = |λ|∥v∥
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Cauchy-Schwarz
In order to prove the triangle inequality, we need a detour...

Lemma (Cauchy-Schwarz)

For any u, v ∈ V with inner product ⟨·, ·⟩ anmd induced norm
∥v∥ :=

√
⟨v , v⟩, then

|⟨u, v⟩| ≤ ∥u∥∥v∥

Proof.
Consider just when F = R for simplicity. Then for any t ∈ R

⟨u + tv , u + tv⟩ ≥ 0

and so t2 ∥v∥2︸︷︷︸
a

+t (2⟨u, v⟩)︸ ︷︷ ︸
b

+ ∥u∥2︸︷︷︸
c

≥ 0 for all t (imagine a quadratic not crossing

the x-axis. So at most one real root, so the discriminant (b2 − 4ac) must be
non-positive
Therefore,

4|⟨u, v⟩|2 − 4∥u∥2∥v∥2 ≤ 0
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Law of Cosines Proof

We can also prove this with law of cosines.

Figure: Wikipedia

Law of cosines then states

∥v∥2 + ∥w∥2 − 2⟨v ,w⟩ = ∥v − w∥2 = ∥v∥2 + ∥w∥2 − 2∥v∥∥w∥ cos(θ)

After some cancellation, we get

⟨v ,w⟩ = ∥v∥∥w∥ cos(θ)

and since cos(θ) ∈ [−1, 1], we get the desired bound
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Triangle Inequality

We can now prove that the induced norm follows the triangle inequality:

Proof.

∥u + v∥2 = ⟨u + v , u + v⟩
= ⟨u, u⟩+ ⟨v , u⟩+ ⟨u, v⟩+ ⟨v , v⟩
= ∥u∥2 + 2Re(⟨u, v⟩) + ∥v∥2

≤ ∥u∥2 + 2|(⟨u, v⟩)|+ ∥v∥2

≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2
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Angles

Definition

For two vectors u, v ∈ V with inner product ⟨·, ·⟩, we can now define and
angle between the two vectors

θu,v = arccos

(
⟨u, v⟩
∥u∥∥v∥

)

Remark

If ⟨x , y⟩ = 0, then the angle between them is 90◦, so we saw x and y are
perpendicular or orthogonal

Remark

If ∥x∥ = 1 is well, we saw x is normal, and so if both hold then x is
orthonormal
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Orthogonal implies Linear Independence

Proposition

Suppose {v1, ..., vm} are all pairwise orthogonal, with each vi ̸= 0, then
that list is linearly independent

Proof.
Note that vi cannot be zero, so the norm is non-zero

Suppose a1v1 + ...+ amvm = 0

Take the inner product with each vi to get

0 = ⟨vi , 0⟩ = ⟨vi , a1v1 + ...+ amvm⟩ = ai∥vi∥2

Therefore ai = 0

Since this holds for each ai , we have linear independence
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Gram-Schmidt Orthogonalization

We now outline a procedure to convert any basis B = {u1, .., un}into an
orthonormal basis:

1 Define z1 =
u1

∥u1∥ so that ∥z1∥ =
∥∥∥ u1
∥u1∥

∥∥∥ = ∥u1∥
∥u1∥ = 1

2 Define z̃2 = u2 − ⟨u2, z1⟩z1 ← orthogonal to z1 because
⟨z̃2, z1⟩ = ⟨u2 − ⟨u2, z1⟩z1, z1⟩ = ⟨u2, z1⟩ − ⟨u2, z1⟩∥z1∥2 = 0
Then set z2 =

z̃2
∥z̃2∥

3 Define z̃k+1 = uk+1 −
∑k

i=1⟨uk+1, zi ⟩zi ← orthogonal to z1, ..., zk
Then set zk+1 =

z̃k+1

∥z̃k+1∥

Remark
Note that the span of {u1, ..., uk} is the same as the span of {z1, ..., zk} because the are just
linear combinations of each other. Furthermore, we still have linear independence from the
previous proposition, so now we have an orthogonal basis, that is also normal.
This is extremely useful because if v = a1z1 + ...+ anzn then by Pythagorean Theorem/using
orthogonality we get

∥v∥2 = |a1|2 + ...+ |an|2
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