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Maps of Vector Spaces

”Functions describe the Universe” - some guy

Definition

Given two vectors spaces and a function f : V → W , we call this a map of
vector spaces with input v ∈ V and output f (v) =: w ∈ W

f (x) = x2 f : R → R
f (x , y) = x+y

x2+y2 f : R2 → R

f (x , y , z) =
(

x
1−z ,

y
1−z

)
f : R3 → R2

f (a, b) = a+ bi f : R → C
f (z ,w) = (2z + w ,−3z + 2w , z − 4w) f : C2 → C3

f (z) = 1
2∥z∥

2
2 f : Fn → F

f (a+ bi) = a− bi f : C → C
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Linear Maps

In general, functions are simply too complex for us to work with.

Definition

A map T : V → W is called linear if for all v ,w ∈ V and λ ∈ F, we have:

1 Additivity:
T (u + v) = T (u) + T (v)

2 Homogeneity:
T (λv) = λT (v)

Remark

Note that these maps ”look” like vector spaces. They satisfy the two main
requirements. Furthermore, from the requirement of vector spaces being
closed under addition and scalar multiplication, these functions are well
defined!
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The Vector Space of Linear Maps

Definition

The space of linear maps from V to W , we define as

L(V ,W ) := {T : V → W : T is linear}

Not hard to check that for S ,T ∈ L(V ,W ), we have that

(S + T )(v) := Sv + Tv (λS)(v) := λ(Sv)

are both linear. That is S + T , λS ∈ L(V ,W ) Therefore, L(V ,W ) is
itself a vector space!
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Examples of Linear Maps

The zero functions O ∈ L(V ,W ) where v 7→ 0 ∀v ∈ V
▶ O(v + w) = 0 = 0 + 0 = O(v) + O(w)
▶ O(λv) = 0 = λ0 = λO(v)
▶ Only constant linear function (why?)

The identity map I ∈ L(V ,V ) where v 7→ v

D ∈ L(P(R),P(R)) sending f 7→ f ′

R ∈ L(F∞,F∞) sending (x1, x2, ...) 7→ (0, x1, x2, ...)

M ∈ L(P(R),P(R)) sending f (x) 7→ x2f (x)

Anything with only ”linear components” that is:
▶ T (x , y , z) = (2x − y , 7x + 3z , x + y − z)
▶ T (x , y) = (3x , 2y − x , 4y)
▶ T (x , y , z) = (3x + a, 4y + b) is linear iff a = b = 0
▶ T (x , y) = (2x + a, by2 + 7x , c sin(x) + d

√
y + kx) is linear iff

a = b = c = d = 0. k is free to be anything!
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”Multiplying” Linear Maps

U V W//
S

//
T

**

ST

Definition

For linear maps T ∈ L(U,V ) and S ∈ L(V ,W ) we define the left
multiplication of T by S as ST ∈ L(U,W ):

(ST )(u) := S(T (u))

Remark

This is exactly just functional composition, but the linearity is nice and
preserved:

ST (u1 + λu2) = S(T (u1 + λu2)) = S(Tu1 + λTu2)︸ ︷︷ ︸
linearity of T

= S(Tu1) + λS(Tu2)︸ ︷︷ ︸
linearity of S

= ST (u1) + λST (u2)
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Null Space (motivation)

Suppose we have the following linear system we are aiming to ”solve”

T (x) = b T ∈ L(V ,W ), x ∈ V , b ∈ W

Pictorially this can look like:

Figure: https://mathpqjq.com/solving-a-linear-system-by-graphing/
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Null Space (motivation)

Here we have

T (x , y) = (3x − 2y , 2x + y) and b = (−7, 7)

(in the standard basis) The solution to this problem is

(x , y) = (1, 5)

which is easily verifiable We then ask, is this the only solution? When are
there infinite solutions?
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Null Space

Definition

We definite the null space of a linear map T : V → W as

null(T ) := {v ∈ V : Tv = 0}

Remark

Often this is called the kernel as well and is used in many areas of
mathematics

0 ∈ null(T ) always
▶ �

��T (0) = T (0 + 0) = T (0) +�
��T (0)

Yields all additional solutions! So if x̂ solves T (x) = b, then x̂ + v for
any v ∈ null(T ) does as well

▶ T (x + v) = T (x) + T (v) = T (x) + 0 = b
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Example

Suppose
φ(z1, z2, z3) = z1 + 2z2 + 3z3, φ ∈ L(C3,C)

null(φ) = {(z1, z2, z3) ∈ C3 : z1 + 2z2 + 3z3 = 0}
⇒ = {(z1, z2, z3) ∈ C3 : z1 = −2z2 − 3z3}
⇒ = {(−2z2 − 3z3, z2, z3) ∈ C3}
⇒ = {z2(−2, 1, 0) + z3(−3, 0, 1) : z2, z3 ∈ C}
⇒ = span({(−2, 1, 0), (−3, 0, 1)})

In this example, the null span reduces to the span of just two vectors!
These are linearly independent, and so the null space is a two dimensional
subspace of V = C3 with the above basis as a valid one.
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Null Space is a Subspace

This is always the case:

Theorem

null(T ) is always a subspace of V

Proof.

Suppose v ,w ∈ null(T )

T (v + w) = Tv + Tw = 0 + 0 = 0

T (λv) = λT (v) = λ0 = 0

Therefore, v + w , λv ∈ null(T ) and so it is closed under linearity
conditions, so it is a subspace.
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Injective

Definition

A map T : V → W (not necessarily linear) is injective or one-to-one if

f (x) = f (y) =⇒ x = y

Equivalently,
x ̸= y =⇒ f (x) ̸= f (y)

This condition in general can be difficult to verify because we would need
to check this for all x , y ∈ V . Linear maps are far nicer in that
T ∈ L(V ,W ) is injective if and only if null(T ) = {0}

Proof.
(=⇒) If T is injective, then if Tv = 0 = T (0), then v = 0, so null(T ) = {0}
(⇐=) If null(T ) = {0}, then if Tv = Tw , by linearity, we have T (v − w) = 0, and so
v − w ∈ null(T ) = {0}
Therefore, v = w and T is injective.
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Previous Graphical Example
Recall when we had

T (x , y) = (3x − 2y , 2x + y)

To find null(T ) we have to simultaneously have

3x − 2y = 0

2x + y = 0

Adding the first equation to twice the second, we get

7x = 0

so x = 0. And subbing that in we get y = 0. Therefore, the only vector in
the null space is the zero vector, so T is injective, and so the entire set of
solutions is

x̂ + null(T ) = x̂ + {0} = {x̂}

There is only one unique solution!
Aaron Zoll (Johns Hopkins University) Linear Algebra Review Session Day 2 August 21st 2024 14 / 52



Range
We now have described one fundamental subspace of the input space:
null(T ) ⊆ V When working with maps T : V → W , all of V is acted on
and sent somewhere in W .

Definition

We define the range of a map to be the set of all outputs

range(T ) := {Tv : v ∈ V } = {w ∈ W : w = Tv for some v ∈ V }

In the first example, we had
T (z1, z2, z3) = z1 + 2z2 + 3z3

Is it easy to see that range(T ) = C, for if we pick any z ∈ C, setting

(z1, z2, z3) = (z, 0, 0)

would work. Similarly, setting
(z1, z2, z3) = (0, z/2, 0)

or even
(z1, z2, z3) = (z/6, z/6, z/6)

works. Thus T was not injective (but we know that because it had a nontrivial null space!
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Example

Suppose T ∈ L(R2,R3) is defined by (note the change to the ”basis
representation”)

T (x , y) = (2x , 6y , x + y) = x


2

0

1

+ y


0

5

1


for any x , y ∈ R. Therefore, the range the already in ”span form”
range(T ) = span({(2, 0, 1), (0, 5, 1)})

Aaron Zoll (Johns Hopkins University) Linear Algebra Review Session Day 2 August 21st 2024 16 / 52



Example

Suppose T ∈ L(R3,R2) is defined by

T (x , y , z) = (2x + 4y − 3z , x + 2y + z) = x

2
1

+ y

4
2

+

−3

1


for any x , y , z ∈ R. Still, the range the already in ”span form”

range(T ) = span({(2, 1), (4, 2), (−3, 1)})

but this is no longer a basis because the list is too long. We can remove
one to get a basis of the range.
Which of the following is correct?

1 range(T ) = span({(4, 2), (−3, 1)})
2 range(T ) = span({(2, 1), (−3, 1)})
3 range(T ) = span({(2, 1), (4, 2)})
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Range is a Subspace
We saw that the null space describes a subspace of the input. Does the
range do the same for the output?

Theorem

For map T ∈ L(V ,W ), range(T ) is a subspace of W

Proof.

Suppose w1,w2 ∈ range(T ). Then there exists v1, v2 ∈ V for which

w1 = Tv1 w2 = Tv2

Therefore,

w1 + w2 = Tv1 + Tv2 = T (v1 + v2) λw1 = λTv1 = T (λv1)

Since V is a vector space, both v1 + v2 and λv1 are in V , so
w1 + w2, λw1 ∈ range(T )
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Surjective

Definition

A map T : V → W (not necessarily linear) is surjective or onto if

range(T ) = W

Equivalently, for any w ∈ W there exists a v ∈ V with Tv = w

Figure: https://www.geeksforgeeks.org/linear-mapping/
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Exact Sequence (quick aside)

Note: Maps ”shrink space”.
All these tools let us get an understanding of the structure...

Figure: Wikipedia
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Rank-Nullity Theorem (first ”Big” theorem)
also known as ”The Fundamental Theorem of Linear Maps”

Suppose V is finite dimensional and T ∈ L(V ,W ). Then range(T ) is
finite dimensional and

dimV = dimnull(T )︸ ︷︷ ︸
nullity

+dim range(T )︸ ︷︷ ︸
rank

Proof.
Let {u1, ..., uk} be a basis of null(T ) and extend to a basis of all of V : {u1, ..., uk , v1, ..., vr}
Therefore, dim null(T ) = k and dimV = k + r , so all we need to show is that dim range(T ) = r

Suppose v ∈ V , then since the above is a basis, we can write
v = a1u1 + ...+ akuk + b1v1 + ...+ brvr and since all the ui

′s are in the null space:
T (v) = b1Tv1 + ...brTvr . Since this holds for all v ∈ V , we can represent all the w ∈ range(T )
as a linear combination of the Tv ′

i s. Therefore {Tv1, ...,Tvr} spans the range. Finally, if

c1Tv1 + ...+ crTvr = 0, then by linearity cv1 + ...+ cvr ∈ null(T ) That is, some linear
combination of the v ′

i s is a linear combination of the u′i s. But they are linearly independent
from each other! The two spans only intersect at the zero vector. So this sum must be 0 as
well, and thus each ci is 0.
i.e. {Tv1, ...,Tvr} is also linearly independent, and so it forms a basis with dimension r
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Remark on Rank/Nullity

Corollary
The rank is bounded above by the dimension of the input and output space:

dim range(T ) ≤ min{dimV , dimW }

Corollary
If dimV > dimW then no T ∈ L(V ,W ) is injective

dim null(T ) = dimV − dim range(T )

≥ dimV − dimW > 0

Corollary
If dimV < dimW then no T ∈ L(V ,W ) is surjective

dim range(T ) ≤ dimV

< dimW
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Remark on Solving Linear Systems

If we are solving T (x) = b with T ∈ L(Rn,Rm), that is we are solving

T1,1x1 + T1,2x2 + ...+ T1,nxn = b1

T2,1x1 + T2,2x2 + ...+ T2,nxn = b2
...

Tm,1x1 + Tm,2x2 + ...+ Tm,nxn = bm

with each Ti ,j ∈ R. Then if

n > m, so we have more variables than equations: more unknowns
that constraints, then T is not injective and we have infinite
solutions, if ones exist (we call this being consistent)

n < m, so we have more equations than variables: more constraints
than unknowns, then T is not surjective and we have vectors
b ∈ Rm without any solutions!
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Matrices (finally)

Definition

A matrix is an array of numbers

A =



A1,1 A1,2 A1,3 . . . A1,n

A2,1 A2,2 A2,3 . . . A2,n

A3,1 A3,2 A3,3 . . . A3,n

...
...

...
. . .

...

Am,1 Am,2 Am,3 . . . Am,n


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Matrices
The matrix of a (finite dimensional) linear operator
with respect to certain bases is an array of numbers.

Definition

Given a linear map T : V → W and bases BV = {v1, ...vn} and
BW = {w1, ...,wm} then the matrix representation

M(T ,BV ,BW ) = A =



A1,1 A1,2 A1,3 . . . A1,n

A2,1 A2,2 A2,3 . . . A2,n

A3,1 A3,2 A3,3 . . . A3,n

...
...

...
. . .

...

Am,1 Am,2 Am,3 . . . Am,n


such that for each x ∈ V , we have

Tx = y ⇐⇒ A[x ]BV
= [y ]BW
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Matrices
Let’s decompose what the previous statement means:

Recall that given a basis of a vector space: BV , then for any x ∈ V
we can write x = a1v1 + ...+ anvn uniquely.

Therefore Tx = T (a1v1 + ...+ anvn) = a1T (v1) + ...+ anT (vn)

Linearity gives us that we only need to know where v1, ..., vn is sent.

However, Tvi ∈ W . So when it is mapped there, it can also be
represented uniquely as a sum of finitely many values.

Thus, Tvi = b1w1 + ...bmwm from the basis vectors in BW

However, we need this to hold for each basis vector vi , so we need
two indices. We arrive at

Tvj = A1,jw1 + ...+ Am,jwm =
m∑
i=1

Ai ,jwi

In other words, to compute/find a matrix of a linear operator, we
input each basis vector, see where it goes, and represent it in the
output basis
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Example

This is a lot to unpack... let’s see an example:

T (x , y) = (2x + 3y ,−x + y , 4x − 7y)

If we start with the standard bases

BV = {e1, e2} BW = {f1, f2, f3}

Then we get that

T (e1) = (2,−1, 4) = 2f1 + (−1)f2 + 4f3

T (e2) = (3, 1,−7) = 3f1 + 1f2 + (−7)f3

If we ”pattern match” the corresponding coefficients on the output bases to the ”array
representation” above we get

A =


2 3

−1 1

4 −7


which is exactly what we would get it we get wrote T (x , y) is a standard ”vector” form
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Example
Again consider

T (x , y) = (2x + 3y ,−x + y , 4x − 7y)

but now let’s have the bases be different:

B′
V =


1
2

 ,

 2

−1

 B′
W =




8

1

−10

 ,


1/3

−1

5

 ,


−9

2

−7




Doing the same trick we get:

T (v1) = (8, 1,−10) = 1w1 + 0w2 + 0w3

T (vw ) = (1,−3, 15) = 0w1 + 3w2 + 0w3

So this matrix representation is

M(T ,B′
V ,B

′
W ) =


1 0

0 3

0 0


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Example

Okay, this all seems a little contrived and pointless, when would this be needed?
Well consider ”non-standard” vector spaces. Nothing too crazy, but let’s consider
V = P3(R). Let D : V → V be differentiation. So T (p) = p′ If we just consider
the standard basis B = {1, x , x2, x3}, then

D(1) = 0 = 0v1 + 0v2 + 0v3 + 0v4

D(x) = 1 = 1v1 + 0v2 + 0v3 + 0v4

D(x2) = 2x = 0v1 + 2v2 + 0v3 + 0v4

D(x3) = 3x2 = 0v1 + 0v2 + 3v3 + 0v4

and so we get a matrix representation for an operation like differentiation. This

will be useful in the future: M(D) =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


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Recap
In general, recall we have a basis for the input space

BV = {v1, ..., vn}

and a basis for the output space

BW = {w1, ...,wm}

We know that for each input basis vector, we can map it through T , and write it
as a linear combination of the output basis vectors:

Tvj = A1,jw1 + ...+ Am,jwm

This is precisely then the j th column of the matrix:

Figure: Linear Algebra Done Right
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Recap

In other words

M(T ,BV ,BW ) =



∣∣∣∣ ∣∣∣∣ ∣∣∣∣
[Tv1]BW

[Tv2]BW
... [Tvn]BW∣∣∣∣ ∣∣∣∣ ∣∣∣∣



M(T ,BV ,BW ) =



A1,1 A1,2 A1,3 . . . A1,n

A2,1 A2,2 A2,3 . . . A2,n

A3,1 A3,2 A3,3 . . . A3,n

...
...

...
. . .

...

Am,1 Am,2 Am,3 . . . Am,n


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Why do we care?

Setting up matrices in this way let’s us

1 Utilize linearity to evaluate a function with much smaller amount of
information (just mn numbers).

2 Allows freedom of choice of basis which will be extremely useful later
(foreshadowing change of basis/spectral decomposition/Schur
decomposition/SVD/etc.)

3 This explains why matrix-vector multiplication works the way it does
(and matrix-matrix multiplication too)!
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Matrix Vector Multiplication
Suppose x = c1v1 + ...+ cnvn then

T (x) = T (
n∑

i=1

civi ) =
n∑

i=1

ciTvi = y =⇒ [y ]BW
=

n∑
i=1

ci [Tvi ]BW︸ ︷︷ ︸
scaled columns

Then since we have a matrix representation

A =


| | |

[Tv1]BW
[Tv2]BW

... [Tvn]BW

| | |


we have (recall that matrix vector multiplication exactly yields a linear
combination of the columns)

A[x ]BV
=


| | |

[Tv1]BW
[Tv2]BW

... [Tvn]BW

| | |



c1

c2
...

cn

 =
n∑

i=1

ci [Tvi ]BW
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Matrix Multiplication

It’ll be useful to define the set of matrices from Fn → Fm for given field F

Definition

The set of matrices from Fn → Fm (so m by n matrices) will be denoted
as Mm,n(F). If m = n we can just use Mn(F)

Consider the follow matrices A ∈ Mm,n and C ∈ Mn,p

A =



A1,1 A1,2 A1,3 . . . A1,n

A2,1 A2,2 A2,3 . . . A2,n

A3,1 A3,2 A3,3 . . . A3,n

...
...

...
. . .

...

Am,1 Am,2 Am,3 . . . Am,n


C =



C1,1 C1,2 C1,3 . . . C1,n

C2,1 C2,2 C2,3 . . . C2,n

C3,1 C3,2 C3,3 . . . C3,n

...
...

...
. . .

...

Cm,1 Cm,2 Cm,3 . . . Cm,n


We can view the product of AC ∈ Mm,p in three ways:
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Naive Approach
If you had the same first experience with matrices I did, you were taught
this ”row by column” thing:

Figure: ThePalindrome.org

It is simple enough to memorize, and is drilled enough to seem natural. In
algebraic terms we get an inner product of the j th row of A and the kth

column of C

[AC ]j ,k =
n∑

r=1

Aj ,rCr ,k = ⟨aj ,Ck⟩ 1 ≤ j ≤ m, 1 ≤ k ≤ p
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Matrix Multiplication (as composition of linear maps)
Consider T : U → V and S : V → W with dimensions p, n,m respectively. Thus, we can have
bases

BU = {u1, ..., up} BV = {v1, ..., vn} BW = {w1, ...,wm}

We can then define the matrices

A := M(S,BV ,BW ) C := M(T ,BU ,BV )

We already have seen that ST : U → W is linear, and so we aim to find the matrix
AC := M(ST ,BU ,BW ) ∈ Mm,p . Recall, to find the matrix, we plug in the input basis vectors,
and see how they are written in the output. So for any 1 ≤ k ≤ p:

(ST )uk = S

(
n∑

r=1

Cr,kvr

)

=
n∑

r=1

Cr,k (Svr )

=
n∑

r=1

Cr,k

m∑
j=1

Aj,rwj

=
m∑
j=1

(
n∑

r=1

Aj,rCr,k

)
wj
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Matrix as a list of vectors

Finally, we can view the right matrix as a list of p vectors in Fn:

C =


| | |

C1 C2 ... Cp

| | |


The matrix A then acts on each vector simultaneously and we get

AC =


| | |

AC1 AC2 ... ACp

| | |


A good exercise would be to verify from the matrix-vector multiplication (a
linear combination of the columns) that this is equivalent to the previous.
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Inverses

Definition
For T ∈ L(V ,W ) is invertible if there exists a S ∈ L(W ,V ) such that

ST = IV ∈ L(V ,V ) and TS = IW ∈ L(W ,W )

That is, ST (v) = v and TS(w) = w for all v ∈ V and w ∈ W

Remark (uniqueness of inverses)
If S1 and S2 are inverses of T then

S1 = S1IW = S1(TS2) = (S1T )S2 = IV S2 = S2

So S1 = S2

Remark
Furthermore ST = I implies that TS = I (in the respective vector spaces). Thus we call S the
inverse of T and denote it as

S = T−1
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Conditions for Invertibility

Theorem
T ∈ L(V ,W ) is invertible if and only if T is injective and surjective

Proof.
(=⇒) Suppose T is invertible.

▶ (Injectivity) Suppose T (u) = T (v). Then since T−1 exists, we multiply on the left
on both sides to get u = T−1Tu = T−1Tv = v . So u = v and T is injective.

▶ (Surjectivity) Now let w ∈ W be arbitrary and since T−1 ∈ L(W ,V ) we have that
T−1w ∈ V . So then T (T−1w) = w , so there exists something in V that is
mapped to any w ∈ W

(⇐=) Since T is both injective and surjective, each w ∈ W has a unique v ∈ V such that

Tv = w . Defining S : W → V element wise, so that Sw = v , the unique input of T
▶ TS = I by definition
▶ ST = I because T (ST (v)) = (TS)(Tv) = I ◦ Tv , and since T is injective, we get

that (ST )(v) = v
▶ Finally T (S(w1) + λS(w2)) = TS(w1) + λTS(w2) = w1 + λw2. Since S is defined

by T (S(w)) = w , then T (S(w1 + λw2)) = w1 + λw2. Injectivity of T concludes
the linearity condition: S(w1 + λw2) = S(w1) + λS(w2)
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Conditions for Invertibility
When the map is injective (one-to-one) and surjective (onto), then we
get a nice equivalence between the input and output space. We can then
actively construct the inverse.

Figure: Both injective and surjective

Aaron Zoll (Johns Hopkins University) Linear Algebra Review Session Day 2 August 21st 2024 40 / 52



Conditions for Invertibility
If we don’t have injectivity, then we lose the ability to define a unique
output of the inverse map. Recall, any function must have a unique
output (vertical line test).

Figure: Not injective
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Conditions for Invertibility
If we don’t have surjectivity, then we lose the ability to define the map for
some of the desired inputs (elements of W ).
Note: if the map is injective, then we can always define a map from
T−1 : range(T ) → V . Hence why we want surjectivity to get a map from
all of W → V .

Figure: Not injective
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Conditions for Invertibility

Final note of invertibility. In finite dimensions we really only need one of
these conditions:

Remark

T invertible ⇐⇒ T injective ⇐⇒ T surjective

with the proof coming directly from the Rank-Nullity Theorem
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Change of Basis
Recall that both vectors and matrices require a basis to represent them. Typically, we just deal
with the ”standard basis” as this is the easiest to understand and utilize, but there are many
reasons to perform a change of basis.

Definition
Suppose we have a vector v ∈ V and a basis B = {v1, ...vn}. We then can write v in a vector
form as

[v ]B =


a1

a2

. . .

an

 = a1v1 + ...anvn

Given a new basis B′ = {v ′
1, ..., v

′
n} we can perform a change of basis using the change of basis

matrix
SB→B′ ∈ Mn(F)

such that SB→B′ [vj ]B = [vj ]B′ for each j and therefore

SB→B′ [v ]B = [v ]B′

Essentially, all we are saying is that we can transform [v ]B 7→ [v ]B′ with a linear transformation
simply defined from writing each new vector in the coordinates of the old
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Change of Basis

Remark
Note: Change of Basis is, I think, the hardest concept to fully understand in linear algebra.
However, it is essential to understanding all the matrix decompositions.

We start with constructing SB→B′ be first constructing its inverse. We will explain in a bit why
this exists.
Since B is our original basis, we can write each new basis vector as a linear combination of them

v ′
1 = A1,1v1 + A2,1v2...+ An,1vn

v ′
2 = A1,2v1 + A2,2v2...+ An,2vn

...

v ′
n = A1,nv1 + A2,nv2...+ An,nvn

Letting

T =


A1,1 A1,2 ... A1,n

A2,1 A2,2 ... A2,n

...
...

. . .
. . .

An,1 An,2 ... An,n


we can verify that T [vj ]B = T [v ′

j ]B′ = [v ′
j ]B (why?)
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Change of Basis
Is is typically easiest to think about change of basis when the first basis is just the
standard basis. Then the new basis (in vector form, with respect to the standard
basis) looks more as expected*, and moreover:

TB′ := SB′ 7→I =


| | |

v ′
1 v ′

2 ... v ′
n

| | |


That is, we don’t need to worry how to write the new basis vectors in the old
basis, and the matrix T just has columns that are precisely the new basis vectors.

Remark

So, plugging in the vector with a one in the j th component and zeros elsewhere
extracts the vector v ′

j . In other words, plugging in [v ′
j ]B′ yields [v ′

j ]B (recall here
B is the standard basis.
Thus, TB′ is a map from B′ 7→ B, this is the wrong direct (and very unintuitive in
my opinion).
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Change of Basis

However, since TB′ has linearly independent columns (as they are just the basis vectors), any
TB′x just looks like a linear combination of those columns. So TB′x = 0 ⇐⇒ x = 0, so
null(TB′ ) = {0}, this is trivial and TB′ is invertible. Finally we can define

Definition
The change of basis matrix from the standard basis I = {e1, ..., en} to a new basis
B′ = {v ′

1, ..., v
′
n} is

SI7→B′ = T−1
B′

for TB′ =


| | |

v ′
1 v ′

2 ... v ′
n

| | |



Remark
To construct a change of basis matrix between any two bases, we can simply compose these
linear maps (it is an exercise to show that the composition of invertible maps is still invertible):

SB7→B′ = SI7→B′SB7→I = SB′ 7→I
−1SB7→I = TB′−1TB
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Example
Consider the vector

v = (1, 2, 3, 4)

and bases

I = {e1, e2, e3, e4} B1 =




1

−1

0

1




0

1

0

−1




1

0

1

0




0

1

0

1




We can easily generate the TB by lining up the columns:

TB =


1 0 1 0

−1 1 0 1

0 0 1 0

1 −1 0 1


Now we just have to invert this and multiply by

[v ]I =


1

2

3

4

 TB
−1[v ]I =


1 0 −1 0

1 0.5 −1 −0.5

0 0 1 0

0 0.5 0 0.5




1

2

3

4

 =


−2

−3

3

3



Note, we can verify that we must multiply by the inverse, TB
−1 by checking a basis vector.
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Change of Basis (linear maps)

Ok well this all seemed like a round about way to do something we already
knew... If we want to find a linear combination of some vectors that equal
something desired, it is exactly just solving a linear system:

Ax = b ⇐⇒
[
some column vectors

] [
some unknowns

]
=

[
desired vector

]
In this particular case, all we are doing is solving

TBx = [v ]I

However, change of basis is especially useful when considering linear
maps!
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Change of Basis (linear maps)

Theorem

Given a matrix A = M(T ,B) representing linear map T : V → V with basis B.
Then the matrix D = M(T ,B′) for a new basis B′ looks like

D = SB→B′ASB′→B

If B = I, the standard basis, then S is the matrix whose columns are the basis
vectors and

D = S−1AS ⇐⇒ A = SDS−1

Definition

If two matrices can be related by an invertible (nonsingular) matrix in the above
way, we say two (square) matrices are similar:

A,B are similar if and only if A = SBS−1 for some invertible matrix S
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Similarity

Remark

As we will see, similar matrices share many, many properties (trace, determinant,
eigenvalues, multiplicity, etc.).

Moreover, the big result is that all similar matrices are the same linear map,
just under a different basis, so of course they should have similar structure!

Remark
Furthermore, similarity forms an equivalence relation. That is:

1 A is similar to A for any A ∈ Mn

2 If A is similar to B, then B is similar to A

3 If A is similar to B, and B is similar to C, then A is similar to C

Therefore, we can choose one matrix to ”represent” the equivalence class of all its
similar matrices. In other words, there exists just one matrix, let’s call it J, that
gives all the information about the map.Then any other matrix similar to J, will
have similar features, just perhaps in a different basis (e.g. different eigenvectors)
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Gaussian Elimination

Note: In many cases, we set up a system that has an invertible matrix, but
finding the inverse is difficult, even for a computer!

Remark

When solving
Ax = b

or recall the matrix-matrix multiplication can be viewed as repeated
matrix-vector multiplication, so this generalizes, we often do not calculate

x = A−1b

Instead, we utilize something much easier, faster, cheaper, and more
importantly, informational.
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